Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 1;35(Suppl 1):S180-S187.
doi: 10.1519/JSC.0000000000002960.

Upper-Body Resistance Exercise Reduces Time to Recover After a High-Volume Bench Press Protocol in Resistance-Trained Men

Affiliations

Upper-Body Resistance Exercise Reduces Time to Recover After a High-Volume Bench Press Protocol in Resistance-Trained Men

Sandro Bartolomei et al. J Strength Cond Res. .

Abstract

Bartolomei, S, Totti, V, Griggio, F, Malerba, C, Ciacci, S, Semprini, G, and Di Michele, R. Upper-body resistance exercise reduces time to recover after a high-volume bench press protocol in resistance-trained men. J Strength Cond Res 35(2S): S180-S187, 2021-The aim of this study was to compare the effects of active and passive strategies on the recovery response after a high-volume bench press protocol. Twenty-five resistance-trained men (mean ± SD: age = 25.8 ± 3.6 years; body mass = 87.1 ± 12.1 kg; and height = 177.4 ± 4.9 cm) performed a high-volume bench press session (8 sets of 10 reps at 70% of 1 repetition maximum). Subsequently, they were randomly assigned to an active recovery (AR) group (n = 11) or to a passive recovery (PR) group (n = 14). Active recovery consisted of light bench press sessions performed 6 hours and 30 hours after the high-volume exercise protocol. Muscle performance (bench throw power [BTP] and isometric bench press [IBP]) and morphology (muscle thickness of pectoralis major [PECMT] and of triceps brachii [TRMT]) were measured before exercise (baseline [BL]), and at 15-minute (15P), 24-hour (24P), and 48-hour (48P) post-exercise. Post-exercise recovery of both maximal strength and power was accelerated in AR compared with PR. Both BTP and IBP were significantly (p < 0.001) reduced at 15P and 24P in PR, whereas changes were significant (p < 0.001) at 15P only in AR. PECMT was still significantly (p = 0.015) altered from BL at 48P in PR, whereas changes were significant (p < 0.001) at 15P only in AR. No significant interactions (p > 0.05) between PR and AR were detected for TRMT and muscle soreness. The present results indicate that AR enhances the recovery rate after high-volume exercise sessions and may be included in resistance training programs to optimize muscle adaptations.

PubMed Disclaimer

References

    1. Abe T, Kondo M, Kawakami Y, Fukunaga T. Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am J Hum Biol 6: 161–170, 1994.
    1. Abaïdia A, Delacroix B, Leduc C, Lamblin J, McCall A, Baquet G, et al. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 31: 115–125, 2016.
    1. Andersson HM, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: Effects of active recovery. Med Sci Sports Exerc 40: 372–380, 2008.
    1. Bangsbo J. The physiology of soccer—With special reference to intense intermittent exercise. Acta Physiol Scand Suppl 619: 1–55, 1994.
    1. Barnett A. Using recovery modalities between training sessions in elite athletes. Does it help? Sports Med 36: 781–796, 2006.

LinkOut - more resources