Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 7;19(1):59.
doi: 10.1186/s12890-019-0825-7.

Detection of early lung cancer among military personnel (DECAMP) consortium: study protocols

Affiliations

Detection of early lung cancer among military personnel (DECAMP) consortium: study protocols

Ehab Billatos et al. BMC Pulm Med. .

Abstract

Background: Lung cancer is the leading cause of cancer-related death due in large part to our inability to diagnose it at an early and potentially curable stage. Screening for lung cancer via low dose computed tomographic (LDCT) imaging has been demonstrated to improve mortality but also results in a high rate of false positive tests. The identification and application of non-invasive molecular biomarkers that improve the performance of CT imaging for the detection of lung cancer in high risk individuals would aid in clinical decision-making, eliminate the need for unnecessary LDCT follow-up, and further refine the screening criteria for an already large high-risk population.

Methods: The Detection of Early Lung Cancer Among Military Personnel (DECAMP) consortium is conducting two multicenter prospective studies with the goals of developing an integrated panel of both airway and blood-based molecular biomarkers that discriminate benign and malignant indeterminate nodules detected on CT scan as well as predict the future development of lung cancer in high-risk individuals. To achieve these goals, DECAMP is compiling an extensive array of biospecimens including nasal brushings, serum, plasma and intrathoracic airway samples (bronchial brushings and bronchial biopsies) from normal-appearing airway epithelium.

Discussion: This bank of samples is the foundation for multiple DECAMP efforts focused on the identification of those at greatest risk of developing lung cancer as well as the discrimination of benign and malignant pulmonary nodules. The clinical, imaging and biospecimen repositories will serve as a resource for the biomedical community and their investigation of the molecular basis of chronic respiratory disease.

Trial registration: Retrospectively registered as NCT01785342 - DECAMP-1: Diagnosis and Surveillance of Indeterminate Pulmonary Nodules (DECAMP-1). Date of Registration: February 7, 2013. Retrospectively registered as NCT02504697 - DECAMP-2: Screening of Patients With Early Stage Lung Cancer or at High Risk for Developing Lung Cancer (DECAMP-2). Date of Registration: July 22, 2015.

Keywords: Biomarker; DECAMP; Gene expression; Lung cancer.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Human Research Protection Office (HRPO) for the Department of Defense, and the individual site IRBs for every participating site. All subjects were approached for written informed consent to participate in the study in accordance with IRB regulations.

Consent for publication

Not Applicable

Competing interests

E.B., F.D., E.M., H.M., I.M., L.D., C.A., and D.A. have no competing interests. G.W. is a consultant for Boehringer Ingelheim and Janssen Pharmaceuticals. G.W. is founder and co-owner of Quantitative Imaging Solutions. A.S. is an employee of Johnson and Johnson.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a DECAMP-1 Schema. DECAMP-1 is recruiting 500 subjects aged 45 and older with indeterminate pulmonary nodules (0.7 to 3.0 cm) and a 20+ pack-year smoking history. Patients in this cohort have biospecimens collected at baseline and then are followed prospectively until a diagnosis of cancer or benign is made. This is the diagnostic arm of the study. b DECAMP-2 Schema. DECAMP-2 is recruiting 800 subjects aged 50–79 with a 20+ pack-year smoking history and a diagnosis of chronic obstructive pulmonary disease (COPD), emphysema or family history of lung cancer. Biospecimens from these patients are collected at baseline and annually. This constitutes the screening arm of the study
Fig. 2
Fig. 2
DECAMP Study Group Infrastructure. The DECAMP consortium is a multidisciplinary and translational research program that includes 15 clinical study sites (7 VA hospitals, 4 designated Military Treatment Facilities [MTF], and 4 academic hospitals), several molecular biomarker laboratories, and Biostatics, Bioinformatics, Pathology, and Biorepository core centers and laboratories. The DECAMP Coordinating Center serves as the primary administrative facility which regulates the design and execution of the study within this multi-institutional consortium
Fig. 3
Fig. 3
Biomarker Map. Bronchoscopy is performed at baseline in both DECAMP-1 and DECAMP-2 and a second time after 2 years for participants enrolled in DECAMP-2 to capture bronchial brushings and endobronchial forceps biopsies. Other specimens collected include nasal brushings, buccal scrapings, blood (fractionated into plasma and serum), urine, and sputum samples. Computed Tomography (CT) imaging is collected on all patients and used for quantitative CT imaging techniques. In patients who have a confirmed diagnosis of lung cancer and qualify as surgical candidates, fresh frozen and formalin-fixed paraffin-embedded tumor tissue is collected as well

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30. doi: 10.3322/caac.21387. - DOI - PubMed
    1. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32:605–44. doi: 10.1016/j.ccm.2011.09.001. - DOI - PMC - PubMed
    1. Gould MK, Tang T, Liu I-LA, Lee J, Zheng C, Danforth KN, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192:1208–1214. doi: 10.1164/rccm.201505-0990OC. - DOI - PubMed
    1. National Lung Screening Trial Research Team. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409. doi: 10.1056/NEJMoa1102873. - DOI - PMC - PubMed
    1. Pinsky PF, Berg CD. Applying the National Lung Screening Trial eligibility criteria to the US population: what percent of the population and of incident lung cancers would be covered? J Med Screen. 2012;19:154–156. doi: 10.1258/jms.2012.012010. - DOI - PubMed

Publication types

Substances

Associated data