Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019:56:37-63.
doi: 10.1016/bs.acdb.2019.01.001. Epub 2019 Feb 23.

Mechanisms of Cross-situational Learning: Behavioral and Computational Evidence

Affiliations
Review

Mechanisms of Cross-situational Learning: Behavioral and Computational Evidence

Yayun Zhang et al. Adv Child Dev Behav. 2019.

Abstract

Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.

Keywords: Associative learning; Cross-situational learning; Hypothesis testing; Statistical learning; Word learning.

PubMed Disclaimer

Publication types

LinkOut - more resources