Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May;17(5):307-319.
doi: 10.1038/s41579-019-0173-x.

Electroactive microorganisms in bioelectrochemical systems

Affiliations
Review

Electroactive microorganisms in bioelectrochemical systems

Bruce E Logan et al. Nat Rev Microbiol. 2019 May.

Abstract

A vast array of microorganisms from all three domains of life can produce electrical current and transfer electrons to the anodes of different types of bioelectrochemical systems. These exoelectrogens are typically iron-reducing bacteria, such as Geobacter sulfurreducens, that produce high power densities at moderate temperatures. With the right media and growth conditions, many other microorganisms ranging from common yeasts to extremophiles such as hyperthermophilic archaea can also generate high current densities. Electrotrophic microorganisms that grow by using electrons derived from the cathode are less diverse and have no common or prototypical traits, and current densities are usually well below those reported for model exoelectrogens. However, electrotrophic microorganisms can use diverse terminal electron acceptors for cell respiration, including carbon dioxide, enabling a variety of novel cathode-driven reactions. The impressive diversity of electroactive microorganisms and the conditions in which they function provide new opportunities for electrochemical devices, such as microbial fuel cells that generate electricity or microbial electrolysis cells that produce hydrogen or methane.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Potter, M. C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B Biol. Sci. 84, 260–276 (1911).
    1. Logan, B. E. Microbial Fuel Cells (John Wiley & Sons, Inc., 2008).
    1. Logan, B. E. & Rabaey, K. Conversion of wastes into bioelectricity and chemicals using microbial electrochemical technologies. Science 337, 686–690 (2012). - PubMed
    1. Myers, J. M. & Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260–269 (2001). - PubMed - PMC
    1. El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Nat. Acad. Sci. USA 107, 18127–18131 (2010). - PubMed

Publication types

Supplementary concepts

LinkOut - more resources