Electroactive microorganisms in bioelectrochemical systems
- PMID: 30846876
- DOI: 10.1038/s41579-019-0173-x
Electroactive microorganisms in bioelectrochemical systems
Abstract
A vast array of microorganisms from all three domains of life can produce electrical current and transfer electrons to the anodes of different types of bioelectrochemical systems. These exoelectrogens are typically iron-reducing bacteria, such as Geobacter sulfurreducens, that produce high power densities at moderate temperatures. With the right media and growth conditions, many other microorganisms ranging from common yeasts to extremophiles such as hyperthermophilic archaea can also generate high current densities. Electrotrophic microorganisms that grow by using electrons derived from the cathode are less diverse and have no common or prototypical traits, and current densities are usually well below those reported for model exoelectrogens. However, electrotrophic microorganisms can use diverse terminal electron acceptors for cell respiration, including carbon dioxide, enabling a variety of novel cathode-driven reactions. The impressive diversity of electroactive microorganisms and the conditions in which they function provide new opportunities for electrochemical devices, such as microbial fuel cells that generate electricity or microbial electrolysis cells that produce hydrogen or methane.
Similar articles
-
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.Appl Environ Microbiol. 2012 Aug;78(15):5212-9. doi: 10.1128/AEM.00480-12. Epub 2012 May 18. Appl Environ Microbiol. 2012. PMID: 22610438 Free PMC article.
-
Geobacter sulfurreducens strain 60473, a potent bioaugmentation agent for improving the performances of bioelectrochemical systems.J Biosci Bioeng. 2025 Jan;139(1):36-43. doi: 10.1016/j.jbiosc.2024.10.007. Epub 2024 Nov 6. J Biosci Bioeng. 2025. PMID: 39510935
-
[Promoting efficiency of microbial extracellular electron transfer by synthetic biology].Sheng Wu Gong Cheng Xue Bao. 2017 Mar 25;33(3):516-534. doi: 10.13345/j.cjb.160419. Sheng Wu Gong Cheng Xue Bao. 2017. PMID: 28941349 Review. Chinese.
-
Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8961-8968. doi: 10.1021/acsami.8b14340. Epub 2019 Feb 20. ACS Appl Mater Interfaces. 2019. PMID: 30730701
-
Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.Biotechnol Adv. 2020 Mar-Apr;39:107468. doi: 10.1016/j.biotechadv.2019.107468. Epub 2019 Nov 7. Biotechnol Adv. 2020. PMID: 31707076 Review.
Cited by
-
Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications.Sensors (Basel). 2021 Feb 11;21(4):1279. doi: 10.3390/s21041279. Sensors (Basel). 2021. PMID: 33670122 Free PMC article. Review.
-
Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells.Biosensors (Basel). 2021 May 26;11(6):170. doi: 10.3390/bios11060170. Biosensors (Basel). 2021. PMID: 34073192 Free PMC article.
-
Detoxification mechanisms of electroactive microorganisms under toxicity stress: A review.Front Microbiol. 2022 Nov 29;13:1084530. doi: 10.3389/fmicb.2022.1084530. eCollection 2022. Front Microbiol. 2022. PMID: 36523836 Free PMC article. Review.
-
Towards Application of Electro-Fermentation for the Production of Value-Added Chemicals From Biomass Feedstocks.Front Chem. 2022 Jan 19;9:805597. doi: 10.3389/fchem.2021.805597. eCollection 2021. Front Chem. 2022. PMID: 35127650 Free PMC article. Review.
-
Microbial photoelectrosynthesis: Feeding purple phototrophic bacteria electricity to produce bacterial biomass.Microb Biotechnol. 2023 Mar;16(3):569-578. doi: 10.1111/1751-7915.14190. Epub 2022 Dec 19. Microb Biotechnol. 2023. PMID: 36537073 Free PMC article.
References
-
- Potter, M. C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B Biol. Sci. 84, 260–276 (1911).
-
- Logan, B. E. Microbial Fuel Cells (John Wiley & Sons, Inc., 2008).
-
- Logan, B. E. & Rabaey, K. Conversion of wastes into bioelectricity and chemicals using microbial electrochemical technologies. Science 337, 686–690 (2012). - PubMed
-
- El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Nat. Acad. Sci. USA 107, 18127–18131 (2010). - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources