Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance
- PMID: 30847666
- PMCID: PMC6533346
- DOI: 10.1007/s12471-019-1250-5
Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance
Abstract
Background: Genetic heterogeneity is common in inherited cardiac diseases. Next-generation sequencing gene panels are therefore suitable for genetic diagnosis. We describe the results of implementation of cardiomyopathy and arrhythmia gene panels in clinical care.
Methods: We present detection rates for variants with unknown (class 3), likely (class 4), and certain (class 5) pathogenicity in cardiogenetic gene panels since their introduction into diagnostics.
Results: In 936 patients tested on the arrhythmia panel, likely pathogenic and pathogenic variants were detected in 8.8% (4.6% class 5; 4.2% class 4), and one or multiple class 3 variants in 34.8%. In 1970 patients tested on the cardiomyopathy panel, likely pathogenic and pathogenic variants were detected in 19.8% (12.0% class 5; 7.9% class 4), and one or multiple class 3 variants in 40.8%. Detection rates of all different classes of variants increased with the increasing number of genes on the cardiomyopathy gene panel. Multiple variants were detected in 11.7% and 28.5% of patients on the arrhythmia and cardiomyopathy panels respectively. In more recent larger versions of the cardiomyopathy gene panel the detection rate of likely pathogenic and pathogenic variants only slightly increased, but was associated with a large increase of class 3 variants.
Conclusion: Overall detection rates (class 3, 4, and 5 variants) in a diagnostic setting are 44% and 61% for the arrhythmia and cardiomyopathy gene panel respectively, with only a small minority of likely pathogenic and pathogenic variants (8.8% and 19.8% respectively). Larger gene panels can increase the detection rate of likely pathogenic and pathogenic variants, but mainly increase the frequency of variants of unknown pathogenicity.
Keywords: Cardiogenetic; Detection rate; Gene panel; Next-generation sequencing; Variants of unknown significance.
References
-
- Mogensen J, van Tintelen JP, Fokstuen S, et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J. 2015;36:1367–1370. doi: 10.1093/eurheartj/ehv122. - DOI - PubMed
-
- Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA) Heart Rhythm. 2011;8:1308–1339. doi: 10.1016/j.hrthm.2011.05.020. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
