Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi
- PMID: 30848650
- DOI: 10.1103/PhysRevLett.122.076402
Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi
Abstract
Topological semimetals materialize a new state of quantum matter where massless fermions protected by a specific crystal symmetry host exotic quantum phenomena. Distinct from well-known Dirac and Weyl fermions, structurally chiral topological semimetals are predicted to host new types of massless fermions characterized by a large topological charge, whereas such exotic fermions are yet to be experimentally established. Here, by using angle-resolved photoemission spectroscopy, we experimentally demonstrate that a transition-metal silicide CoSi hosts two types of chiral topological fermions, a spin-1 chiral fermion and a double Weyl fermion, in the center and corner of the bulk Brillouin zone, respectively. Intriguingly, we found that the bulk Fermi surfaces are purely composed of the energy bands related to these fermions. We also find the surface states connecting the Fermi surfaces associated with these fermions, suggesting the existence of the predicted Fermi-arc surface states. Our result provides the first experimental evidence for the chiral topological fermions beyond Dirac and Weyl fermions in condensed-matter systems, and paves the pathway toward realizing exotic electronic properties associated with unconventional chiral fermions.
Similar articles
-
Observation of unconventional chiral fermions with long Fermi arcs in CoSi.Nature. 2019 Mar;567(7749):496-499. doi: 10.1038/s41586-019-1031-8. Epub 2019 Mar 20. Nature. 2019. PMID: 30894751
-
Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi.Phys Rev Lett. 2017 Nov 17;119(20):206401. doi: 10.1103/PhysRevLett.119.206401. Epub 2017 Nov 17. Phys Rev Lett. 2017. PMID: 29219365
-
Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals.Phys Rev Lett. 2017 Mar 10;118(10):106406. doi: 10.1103/PhysRevLett.118.106406. Epub 2017 Mar 10. Phys Rev Lett. 2017. PMID: 28339253
-
Interacting chiral electrons at the 2D Dirac points: a review.Rep Prog Phys. 2021 Mar 19;84(3). doi: 10.1088/1361-6633/abc17c. Rep Prog Phys. 2021. PMID: 33059346 Review.
-
Topological kagome magnets and superconductors.Nature. 2022 Dec;612(7941):647-657. doi: 10.1038/s41586-022-05516-0. Epub 2022 Dec 21. Nature. 2022. PMID: 36543954 Review.
Cited by
-
Electronic Structure of B20 (FeSi-Type) Transition-Metal Monosilicides.Materials (Basel). 2019 Aug 24;12(17):2710. doi: 10.3390/ma12172710. Materials (Basel). 2019. PMID: 31450548 Free PMC article. Review.
-
Strong and fragile topological Dirac semimetals with higher-order Fermi arcs.Nat Commun. 2020 Jan 31;11(1):627. doi: 10.1038/s41467-020-14443-5. Nat Commun. 2020. PMID: 32005893 Free PMC article.
-
Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi.Sci Adv. 2020 Jul 15;6(29):eaba0509. doi: 10.1126/sciadv.aba0509. eCollection 2020 Jul. Sci Adv. 2020. PMID: 32832618 Free PMC article.
-
Ultrasound experiments on acoustical activity in chiral mechanical metamaterials.Nat Commun. 2019 Jul 29;10(1):3384. doi: 10.1038/s41467-019-11366-8. Nat Commun. 2019. PMID: 31358757 Free PMC article.
-
Chirality locking charge density waves in a chiral crystal.Nat Commun. 2022 May 25;13(1):2914. doi: 10.1038/s41467-022-30612-0. Nat Commun. 2022. PMID: 35614101 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources