Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 22;122(7):076402.
doi: 10.1103/PhysRevLett.122.076402.

Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi

Affiliations

Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi

Daichi Takane et al. Phys Rev Lett. .

Abstract

Topological semimetals materialize a new state of quantum matter where massless fermions protected by a specific crystal symmetry host exotic quantum phenomena. Distinct from well-known Dirac and Weyl fermions, structurally chiral topological semimetals are predicted to host new types of massless fermions characterized by a large topological charge, whereas such exotic fermions are yet to be experimentally established. Here, by using angle-resolved photoemission spectroscopy, we experimentally demonstrate that a transition-metal silicide CoSi hosts two types of chiral topological fermions, a spin-1 chiral fermion and a double Weyl fermion, in the center and corner of the bulk Brillouin zone, respectively. Intriguingly, we found that the bulk Fermi surfaces are purely composed of the energy bands related to these fermions. We also find the surface states connecting the Fermi surfaces associated with these fermions, suggesting the existence of the predicted Fermi-arc surface states. Our result provides the first experimental evidence for the chiral topological fermions beyond Dirac and Weyl fermions in condensed-matter systems, and paves the pathway toward realizing exotic electronic properties associated with unconventional chiral fermions.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources