Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 1;104(8):3585-3594.
doi: 10.1210/jc.2019-00084.

Skeletal Fragility and Its Clinical Determinants in Children With Type 1 Diabetes

Affiliations

Skeletal Fragility and Its Clinical Determinants in Children With Type 1 Diabetes

Suet Ching Chen et al. J Clin Endocrinol Metab. .

Abstract

Context: Type 1 diabetes (T1D) is associated with an increased fracture risk at all ages.

Objective: To understand the determinants of bone health and fractures in children with T1D.

Design: Case-control study of children with T1D on bone-turnover markers, dual-energy X-ray absorptiometry, and 3 Tesla-MRI of the proximal tibia to assess bone microarchitecture and vertebral marrow adiposity compared with age- and sex-matched healthy children.

Results: Thirty-two children with T1D at a median (range) age of 13.7 years (10.4, 16.7) and 26 controls, aged 13.8 years (10.2, 17.8), were recruited. In children with T1D, serum bone-specific alkaline phosphatase (BAP) SD score (SDS), C-terminal telopeptide of type I collagen SDS, and total body (TB) and lumbar spine bone mineral density (BMD) SDS were lower (all P < 0.05). Children with T1D also had lower trabecular volume [0.55 (0.47, 0.63) vs 0.59 (0.47, 0.63); P = 0.024], lower trabecular number [1.67 (1.56, 1.93) vs 1.82 (1.56, 1.99); P = 0.004], and higher trabecular separation [0.27 (0.21, 0.32) vs 0.24 (0.20, 0.33); P = 0.001] than controls. Marrow adiposity was similar in both groups (P = 0.25). Bone formation, as assessed by BAP, was lower in children with poorer glycemic control (P = 0.009) and who were acidotic at initial presentation (P = 0.017) but higher in children on continuous subcutaneous insulin infusion (P = 0.025). Fractures were more likely to be encountered in children with T1D compared with controls (31% vs 19%; P< 0.001). Compared with those without fractures, the T1D children with a fracture history had poorer glycemic control (P = 0.007) and lower TB BMD (P < 0.001) but no differences in bone microarchitecture.

Conclusion: Children with T1D display a low bone-turnover state with reduced bone mineralization and poorer bone microarchitecture.

PubMed Disclaimer

Publication types

MeSH terms