Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 17;15(16):3301-3306.
doi: 10.1039/c8sm02315h.

Controlled generation of spiky microparticles by ionic cross-linking within an aqueous two-phase system

Affiliations

Controlled generation of spiky microparticles by ionic cross-linking within an aqueous two-phase system

Niki Abbasi et al. Soft Matter. .

Abstract

Microparticles are used in a variety of different fields, such as drug delivery. Recently, non-spherical microparticle generation has become desirable. The high surface-to-volume ratio of non-spherical microparticles allows for enhanced targeting, and attachment to cells and tissue. Current non-spherical microparticle generation techniques require complicated setup, and utilizing natural micrograins, such as pollen grains, as non-spherical delivery vehicles, requires extensive post-processing. Here, we describe a unique and facile chemical synthesis approach, for controlled generation of pollen-like microparticles, based on ionic cross-linking of alginate and calcium chloride (CaCl2), within an all-biocompatible aqueous two-phase system (ATPS) of dextran (DEX) and polyethylene glycol (PEG). Our technique controls the length of spikes that emerge on the surface of these microparticles. We anticipate that these pollen-like spiky microparticles may be used as drug delivery vehicles, and this new chemical synthesis approach may be used for generating other biomaterials.

PubMed Disclaimer

LinkOut - more resources