Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 15:544:217-229.
doi: 10.1016/j.jcis.2019.02.087. Epub 2019 Feb 26.

Influence of Pluronic F127 microenvironments on the photochemical nitric oxide release from S-nitrosoglutathione

Affiliations

Influence of Pluronic F127 microenvironments on the photochemical nitric oxide release from S-nitrosoglutathione

Guilherme F Picheth et al. J Colloid Interface Sci. .

Abstract

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (F127) hydrogels have been used to deliver nitric oxide (NO) topically in biomedical applications. Here, the effect of F127 microenvironments on the photochemical NO release from S-nitrosoglutathione (GSNO) was investigated in F127 solutions 7.6 wt% 15 wt% and 22.5 wt% at 15 °C and 37 °C. Small-angle X-ray Scattering (SAXS) and Differential Scanning Calorimetry (DSC) measurements, along with proton Nuclear Magnetic Resonance (1H NMR) spectral shifts and T2 relaxation data at six different concentration-temperature conditions, allowed identifying F127 microphases characterized by: a sol phase of unimers; micelles in non-defined periodic order, and a gel phase of cubic packed micelles. Kinetic measurements showed that GSNO photodecompositon proceeds faster in micellized F127 where GSNO is segregated to the intermicellar microenvironment. Real time kinetic monitoring of NO release and T2 relaxation profiles showed that NO is preferentially partitioned into the hydrophobic PPO cores of the F127 micelles, with the consequent decrease in its rate of release to the gas phase. These results show that F127 microphases affect both the kinetics of GSNO photodecomposition and the rate of NO escape and can be used to modulate the photochemical NO delivery from F127/GSNO solutions.

Keywords: Hydrogel; Micelles; Microenvironments; Nitric oxide; Pluronic F127; S-nitrosoglutathione; SAXS.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources