Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 8;294(10):3367-3368.
doi: 10.1074/jbc.H119.007830.

Let's get this pyrin started!

Affiliations
Review

Let's get this pyrin started!

Emilia Liana Falcone et al. J Biol Chem. .

Abstract

Inflammasomes enable cells to respond to pathogens or biological damage, but the specific signals being used to convey these messages are not always clear. A new paper identifies two potential microbiota-derived metabolites, the bile acid analogues BAA485 and BAA473, as the first small molecules to activate the pyrin inflammasome. These results suggest that microbiota may be able to modulate this inflammatory process which, in turn, may contribute to the maintenance of intestinal homeostasis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflicts of interest with the contents of this article.

Figures

Figure 1.
Figure 1.
A model for the activation of pyrin by bile acid analogues. The bile acid analogue BAA473 binds either directly or indirectly to pyrin to drive the formation of the pyrin inflammasome and trigger inflammation.

References

    1. Broz P., and Dixit V. M. (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 10.1038/nri.2016.58 - DOI - PubMed
    1. Alimov I., Menon S., Cochran N., Maher R., Wang Q., Alford J., Concannon J. B., Yang Z., Harrington E., Llamas L., Lindeman A., Hoffman G., Schuhmann T., Russ C., Reece-Hoyes J., Canham S. M., and Cai X. (2019) Bile acid analogues are activators of pyrin inflammasome. J. Biol. Chem. 294, 3359–3366 10.1074/jbc.RA118.005103 - DOI - PMC - PubMed
    1. Levy M., Thaiss C. A., Zeevi D., Dohnalová L., Zilberman-Schapira G., Mahdi J. A., David E., Savidor A., Korem T., Herzig Y., Pevsner-Fischer M., Shapiro H., Christ A., Harmelin A., Halpern Z., Latz E., Flavell R. A., Amit I., Segal E., and Elinav E. (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 10.1016/j.cell.2015.10.048 - DOI - PMC - PubMed
    1. Macia L., Tan J., Vieira A. T., Leach K., Stanley D., Luong S., Maruya M., Ian McKenzie C., Hijikata A., Wong C., Binge L., Thorburn A. N., Chevalier N., Ang C., Marino E., Robert R., Offermanns S., Teixeira M. M., Moore R. J., Flavell R. A., Fagarasan S., and Mackay C. R. (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 10.1038/ncomms7734 - DOI - PubMed
    1. Próchnicki T., and Latz E. (2017) Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab. 26, 71–93 10.1016/j.cmet.2017.06.018 - DOI - PubMed

Publication types

LinkOut - more resources