Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;35(4):809-822.
doi: 10.1007/s12640-019-00019-9. Epub 2019 Mar 9.

Bezafibrate In Vivo Administration Prevents 3-Methylglutaric Acid-Induced Impairment of Redox Status, Mitochondrial Biogenesis, and Neural Injury in Brain of Developing Rats

Affiliations

Bezafibrate In Vivo Administration Prevents 3-Methylglutaric Acid-Induced Impairment of Redox Status, Mitochondrial Biogenesis, and Neural Injury in Brain of Developing Rats

Nevton Teixeira da Rosa-Junior et al. Neurotox Res. 2019 May.

Abstract

3-Methylglutaric acid (MGA) is an organic acid that accumulates in 3-methylglutaconic (MGTA) and 3-hydroxy-3-methylglutaric (HMGA) acidurias. Patients affected by these disorders present with neurological dysfunction that usually appears in the first years of life. In order to elucidate the pathomechanisms underlying the brain injury in these disorders, we evaluated the effects of MGA administration on redox homeostasis, mitochondrial respiratory chain activity, and biogenesis in the cerebral cortex of developing rats. Neural damage markers and signaling pathways involved in cell survival, and death were also measured after MGA administration. Furthermore, since the treatment for MGTA and HMGA is still limited, we tested whether a pre-treatment with the pan-peroxisome proliferator-activated receptor (PPAR) agonist bezafibrate could prevent the alterations caused by MGA. MGA provoked lipid peroxidation, increased heme oxygenase-1 content, and altered the activities of antioxidant enzymes, strongly suggestive of oxidative stress. MGA also impaired mitochondrial function and biogenesis by decreasing the activities of succinate dehydrogenase and various respiratory chain complexes, as well as the nuclear levels of PGC-1α and NT-PGC-1α, and cell content of Sirt1. AMPKα1 was further increased by MGA. Neural cell damage was also observed following the MGA administration, as verified by decreased Akt and synaptophysin content and reduced ERK phosphorylation, and by the increase of active caspase-3 and p38 and Tau phosphorylation. Importantly, bezafibrate prevented MGA-elicited toxic effects towards mitochondrial function, redox homeostasis, and neural cell injury, implying that this compound may be potentially used as an adjunct therapy for MGTA and HMGA and other disorders with mitochondrial dysfunction.

Keywords: 3-Methylglutaric acid; Bezafibrate; Cerebral cortex; Mitochondrial biogenesis; Neural damage; Redox homeostasis.

PubMed Disclaimer

References

    1. Pediatr Neurol. 1999 May;20(5):375-80 - PubMed
    1. Arch Biochem Biophys. 2001 Apr 15;388(2):261-6 - PubMed
    1. J Neurosci. 2001 Jun 15;21(12):4125-33 - PubMed
    1. Biochim Biophys Acta. 2002 Jan 2;1586(1):81-91 - PubMed
    1. Semin Neonatol. 2002 Feb;7(1):65-74 - PubMed

LinkOut - more resources