Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 1:130:977-987.
doi: 10.1016/j.ijbiomac.2019.03.045. Epub 2019 Mar 6.

Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute

Affiliations

Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute

Parisa Sobhanian et al. Int J Biol Macromol. .

Abstract

The main objective of this work is to fabricate a nanofibrous scaffold to regenerate skin tissue. A scaffold composed of poly (vinyl alcohol)/gelatin/alginate was prepared using electrospinning method. To improve scaffold biocompatibility and wound healing properties, collagen, extracted from rat tail, was grafted on as-prepared nanofibers. The prepared scaffolds were characterized by SEM, FTIR, swelling ratio test, and water vapor transmission rate (WVTR) measurement. Cytotoxicity of the scaffolds against human fibroblasts and L929 (NCBI C161) cells were tested using direct and indirect methods, respectively. Fibroblast cell adhesion and proliferation on the scaffold were also investigated. Results of morphological studies showed that beadless nanofibers with 229 nm diameter were prepared. ATR-FTIR spectra of collagen grafted nanofiber mats confirmed presence of the collagen on their surface. Collagen grafted nanofibers showed higher swelling ratio than nanofibers without collagen graft. Collagen grafting decreased VWTR. Collagen grafting decreased both tensile strength and Young's modulus of the nanofibrous scaffolds while increased their elongation at break. MTT results showed that both scaffolds are biocompatible with higher cell viability for nanofibers with collagen grafting. Fibroblast cell culture on the scaffolds demonstrated that both of scaffolds have good cell viability and proliferation while collagen grafted scaffold showed better results.

Keywords: Collagen; Electrospinning; Human fibroblast cells; Nanofiber; Skin scaffold.

PubMed Disclaimer

LinkOut - more resources