Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;11(10):1050-1054.
doi: 10.1136/neurintsurg-2018-014697. Epub 2019 Mar 9.

Testing bioresorbable stent feasibility in a rat aneurysm model

Affiliations
Free article

Testing bioresorbable stent feasibility in a rat aneurysm model

Basil Erwin Grüter et al. J Neurointerv Surg. 2019 Oct.
Free article

Abstract

Background: Advances in stent-assisted coiling have incrementally expanded endovascular treatment options for complex cerebral aneurysms. After successful coil consolidation and aneurysm occlusion, endovascular scaffolds are no longer needed. Thus, bioresorbable stents that disappear after aneurysm healing could avoid future risks of in-stent thrombosis and the need for lifelong antiplatelet therapy.

Objective: To assess the applicability and compatibility of a bioresorbable magnesium- alloy stent (brMAS) for assisted coiling.

Methods: Saccular sidewall aneurysms were created in 84 male Wistar rats and treated with brMAS alone, brMAS + aspirin, or brMAS + coils + aspirin. Control groups included no treatment (natural course), solely aspirin treatment, or conventional cobalt-chromium stent + coils + aspirin treatment. After 1 and 4 weeks, aneurysm specimens were harvested and macroscopically, histologically, and molecularly examined for healing, parent artery perfusion status, and inflammatory reactions. Stent degradation was monitored for up to 6 months with micro-computed and optical coherence tomography.

Results: Aneurysms treated with brMAS showed advanced healing, neointima formation, and subsequent stent degradation. Additional administration of aspirin sustained aneurysm healing while reducing stent-induced intraluminal and periadventitial inflammatory responses. No negative interaction was detected between platinum coils and brMAS. Progressive brMAS degradation was confirmed.

Conclusions: brMAS induced appropriate healing in this sidewall aneurysm model. The concept of using bioresorbable materials to promote complete aneurysm healing and subsequent stent degradation seems promising. These results should encourage further device refinements and clinical evaluation of this treatment strategy for cerebrovascular aneurysms.

Keywords: aneurysm; coil; stent.

PubMed Disclaimer

Conflict of interest statement

Competing interests: None declared.