Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 18;29(6):1047-1054.e3.
doi: 10.1016/j.cub.2019.01.074. Epub 2019 Mar 7.

Grid-Cell Distortion along Geometric Borders

Affiliations
Free article

Grid-Cell Distortion along Geometric Borders

Martin Hägglund et al. Curr Biol. .
Free article

Abstract

Grid cells fire in a triangular pattern that tessellates the environment [1]. The pattern displays a global distortion that is well described by a shearing transformation of an idealized grid [2]. However, in addition, distortions often differ across parts of the environment, suggesting that the grid interacts with the environment locally [2-5]. How this occurs is poorly understood. To further determine the nature of local distortions, we therefore analyzed the local spatial characteristics of the grid pattern. When rats ran in a large square enclosure, the grid pattern displayed several stereotypical distortions in relation to features of the environment. These distortions were stronger at edges than on open surfaces. Curved axis orientations and distortions of the grid pattern in the corners could be explained by a geometrical model where the pattern, in conjunction with being sheared, is compressed along the walls of the enclosure. The grid compression coincided with stereotypical running behavior where the animals moved faster in the areas where the grid had the most pronounced distortions. However, neither running direction nor speed influenced the distortions on a moment-to-moment basis, raising the possibility that the distortions are a learned feature.

Keywords: computational models; entorhinal cortex; grid cells; hippocampus; path integration; plasticity; space; spatial map.

PubMed Disclaimer

Publication types

LinkOut - more resources