Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 6;5(3):eaau3114.
doi: 10.1126/sciadv.aau3114. eCollection 2019 Mar.

Biodiversity recovery of Neotropical secondary forests

Danaë M A Rozendaal  1   2   3   4 Frans Bongers  1 T Mitchell Aide  5 Esteban Alvarez-Dávila  6   7 Nataly Ascarrunz  8 Patricia Balvanera  9 Justin M Becknell  10 Tony V Bentos  11 Pedro H S Brancalion  12 George A L Cabral  13 Sofia Calvo-Rodriguez  14 Jerome Chave  15 Ricardo G César  12 Robin L Chazdon  3   16   17 Richard Condit  18 Jorn S Dallinga  4 Jarcilene S de Almeida-Cortez  13 Ben de Jong  19 Alexandre de Oliveira  20 Julie S Denslow  21 Daisy H Dent  22   23 Saara J DeWalt  24 Juan Manuel Dupuy  25 Sandra M Durán  14 Loïc P Dutrieux  4   26 Mario M Espírito-Santo  27 María C Fandino  28 G Wilson Fernandes  29 Bryan Finegan  30 Hernando García  31 Noel Gonzalez  32 Vanessa Granda Moser  33 Jefferson S Hall  18 José Luis Hernández-Stefanoni  25 Stephen Hubbell  18 Catarina C Jakovac  11   16   34 Alma Johanna Hernández  31 André B Junqueira  16   34   35 Deborah Kennard  36 Denis Larpin  37 Susan G Letcher  38 Juan-Carlos Licona  8 Edwin Lebrija-Trejos  39 Erika Marín-Spiotta  40 Miguel Martínez-Ramos  9 Paulo E S Massoca  11 Jorge A Meave  41 Rita C G Mesquita  11 Francisco Mora  9 Sandra C Müller  42 Rodrigo Muñoz  41 Silvio Nolasco de Oliveira Neto  43 Natalia Norden  31 Yule R F Nunes  27 Susana Ochoa-Gaona  19 Edgar Ortiz-Malavassi  44 Rebecca Ostertag  45 Marielos Peña-Claros  1 Eduardo A Pérez-García  41 Daniel Piotto  46 Jennifer S Powers  47 José Aguilar-Cano  31 Susana Rodriguez-Buritica  31 Jorge Rodríguez-Velázquez  9 Marco Antonio Romero-Romero  41 Jorge Ruíz  48   49 Arturo Sanchez-Azofeifa  14 Arlete Silva de Almeida  50 Whendee L Silver  51 Naomi B Schwartz  52 William Wayt Thomas  53 Marisol Toledo  8 Maria Uriarte  52 Everardo Valadares de Sá Sampaio  54 Michiel van Breugel  18   55   56 Hans van der Wal  57 Sebastião Venâncio Martins  43 Maria D M Veloso  27 Hans F M Vester  58 Alberto Vicentini  11 Ima C G Vieira  50 Pedro Villa  59   60 G Bruce Williamson  11   61 Kátia J Zanini  42 Jess Zimmerman  62 Lourens Poorter  1
Affiliations

Biodiversity recovery of Neotropical secondary forests

Danaë M A Rozendaal et al. Sci Adv. .

Abstract

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Tree species richness and recovery of Neotropical secondary forests.
(A) Absolute recovery of species richness (number of species per 25 stems). (B) Relative recovery of species richness [% old-growth (OG)] after 20 years. The 56 study sites (45 sites for relative recovery) are indicated; symbol size scales with predicted recovery at 20 years after abandonment. Green shading indicates forest cover in the year 2000 (39). Dry forests have an annual rainfall of <1500 mm year−1, moist forests have an annual rainfall of 1500 to 2499 mm year−1, and wet forests have an annual rainfall of ≥2500 mm year−1. (C) Forest recovery in dry tropical forests: secondary forest and old-growth forest plot in a dry forest site in the Atlantic forest in Brazil. (D) Forest recovery in wet tropical forests: secondary forest and old-growth forest plot in the wet forest site Sarapiquí in Costa Rica. Stand age (in years) of the secondary forests is indicated. (E) Forest legacies in an agricultural field in Márques de Comillas, Mexico. Photo credit: M.M.E.-S., D.M.A.R., and M.M.-R.
Fig. 2
Fig. 2. Absolute recovery of species richness and relative recovery of species richness and composition in relation to stand age for Neotropical secondary forests.
Each line indicates predicted recovery per site based on the site-specific intercept and slope from the mixed-effects models. Lines span the age range of secondary forest per site; symbols indicate the individual plots. Dry forests (annual rainfall of <1500 mm year−1) are indicated in green, moist forests (1500 to 2499 mm year−1) are indicated in light blue, and wet forests (≥2500 mm year−1) are indicated in dark blue. The gray line indicates the average predicted recovery rate for a site that is recovering after shifting cultivation, with all other predictors kept constant at the mean. (A) Rarefied species richness (per 25 stems; n = 56 sites). (B) Relative recovery of rarefied species richness [as a percentage of old-growth (% OG) forest; n = 45 sites]. The black dashed line indicates 100% recovery to the species richness of old-growth forest. (C) Relative recovery of species richness (n = 45 sites) based on the Chao-Jaccard index. The black dashed line indicates 100% recovery to the mean similarity in species composition (0.47 ± 0.040 SE) between old-growth plots in the same site averaged across the 41 sites with at least two old-growth plots to account for within-site variation in composition across old-growth plots.
Fig. 3
Fig. 3. Effects of stand age, the size of the local old-growth forest species pool, CWA, CEC, forest cover, previous land-use type, and plot size on biodiversity recovery in Neotropical secondary forests.
The size of the local old-growth forest species pool was estimated based on the Chao 1 estimator. Standardized coefficients with bootstrapped 95% confidence intervals are indicated. Negative coefficients indicate a negative relation, and positive coefficients indicate a positive relation. Effect sizes of land-use type comparisons are not directly comparable with those of the other predictors. SC, shifting cultivation; SC and PA, some plots shifting cultivation and some plots pasture; PA, pasture. Filled symbols indicate significant responses, and open symbols indicate nonsignificant responses. (A) Absolute recovery of rarefied species richness (number of species per 25 stems; n = 56 sites). Effects of the local species pool on absolute recovery of rarefied richness were not included, as old-growth plots were not available for all sites. (B) Relative recovery of rarefied richness [% old-growth (OG); n = 45 sites]. (C) Relative recovery of species composition [% OG; based on the Chao-Jaccard index (31)], accounting for variation in composition among old-growth plots (n = 45 sites).

References

    1. Slik J. W. F., Arroyo-Rodríguez V., Aiba S.-I., Alvarez-Loayza P., Alves L. F., Ashton P., Balvanera P., Bastian M. L., Bellingham P. J., van den Berg E., Bernacci L., da Conceição Bispo P., Blanc L., Böhning-Gaese K., Boeckx P., Bongers F., Boyle B., Bradford M., Brearley F. Q., Hockemba M. B.-N., Bunyavejchewin S., Matos D. C. L., Castillo-Santiago M., Catharino E. L. M., Chai S.-L., Chen Y., Colwell R. K., Chazdon R. L., Clark C., Clark D. B., Clark D. A., Culmsee H., Damas K., Dattaraja H. S., Dauby G., Davidar P., DeWalt S. J., Doucet J.-L., Duque A., Durigan G., Eichhorn K. A. O., Eisenlohr P. V., Eler E., Ewango C., Farwig N., Feeley K. J., Ferreira L., Field R., de Oliveira Filho A. T., Fletcher C., Forshed O., Franco G., Fredriksson G., Gillespie T., Gillet J.-F., Amarnath G., Griffith D. M., Grogan J., Gunatilleke N., Harris D., Harrison R., Hector A., Homeier J., Imai N., Itoh A., Jansen P. A., Joly C. A., de Jong B. H. J., Kartawinata K., Kearsley E., Kelly D. L., Kenfack D., Kessler M., Kitayama K., Kooyman R., Larney E., Laumonier Y., Laurance S., Laurance W. F., Lawes M. J., do Amaral I. L., Letche S. G., Lindsell J., Lu X. H., Mansor A., Marjokorpi A., Martin E. H., Meilby H., Melo F. P. L., Metcalfe D. J., Medjibe V. P., Metzger J. P., Millet J., Mohandass D., Montero J. C., Valeriano M. D., Mugerwa B., Nagamasu H., Nilus R., Ochoa-Gaona S., Onrizal N. P., Parolin P., Parren M., Parthasarathy N., Paudel E., Permana A., Piedade M. T. F., Pitman N. C. A., Poorter L., Poulsen A. D., Poulsen J., Powers J., Prasad R. C., Puyravaud J. P., Razafimahaimodiso J. C., Reitsma J., dos Santos J. R., Spironello W. R., Romero-Saltos H., Rovero F., Rozak A. H., Ruokolainen K., Rutishauser E., Saiter F., Saner P., Santos B. A., Santos F., Sarker S. K., Satdichanh M., Schmitt C. B., Schongart J., Schulze M., Suganuma M. S., Sheil D., Pinheiro E. D., Sist P., Stevart T., Sukumar R., Sun I. F., Sunderand T., Suresh H. S., Suzuki E., Tabarelli M., Tang J. W., Targhetta N., Theilade I., Thomas D. W., Tchouto P., Hurtado J., Valencia R., van Valkenburg J., Do T. V., Vasquez R., Verbeeck H., Adekunle V., Vieira S. A., Webb C. O., Whitfeld T., Wich S. A., Williams J., Wittmann F., Woll H., Yang X. B., Yao C. Y. A., Yap S. L., Yoneda T., Zahawi R. A., Zakaria R., Zang R. G., de Assis R. L., Luize B. G., Venticinque E. M., An estimate of the number of tropical tree species. Proc. Natl. Acad. Sci. U.S.A. 112, 7472–7477 (2015). - PMC - PubMed
    1. ter Steege H., Pitman N. C. A., Killeen T. J., Laurance W. F., Peres C. A., Guevara J. E., Salomão R. P., Castilho C. V., Amaral I. L., de Almeida Matos F. D., de Souza Coelho L., Magnusson W. E., Phillips O. L., de Andrade Lima Filho D., de Jesus Veiga Carim M., Irume M. V., Martins M. P., Molino J.-F., Sabatier D., Wittmann F., López D. C., da Silva Guimarães J. R., Mendoza A. M., Vargas P. N., Manzatto A. G., Reis N. F. C., Terborgh J., Casula K. R., Montero J. C., Feldpausch T. R., Coronado E. N. H., Montoya A. J. D., Zartman C. E., Mostacedo B., Vasquez R., Assis R. L., Medeiros M. B., Simon M. F., Andrade A., Camargo J. L., Laurance S. G. W., Nascimento H. E. M., Marimon B. S., Marimon B.-H., Costa F., Targhetta N., Vieira I. C. G., Brienen R., Castellanos H., Duivenvoorden J. F., Mogollón H. F., Piedade M. T. F., Aymard G. A., Comiskey J. A., Damasco G., Dávila N., García-Villacorta R., Diaz P. R. S., Vincentini A., Emilio T., Levis C., Schietti J., Souza P., Alonso A., Dallmeier F., Ferreira L. V., Neill D., Araujo-Murakami A., Arroyo L., Carvalho F. A., Souza F. C., Amaral D. D., Gribel R., Luize B. G., Pansonato M. P., Venticinque E., Fine P., Toledo M., Baraloto C., Cerón C., Engel J., Henkel T. W., Jimenez E. M., Maas P., Mora M. C. P., Petronelli P., Revilla J. D. C., Silveira M., Stropp J., Thomas-Caesar R., Baker T. R., Daly D., Paredes M. R., da Silva N. F., Fuentes A., Jørgensen P. M., Schöngart J., Silman M. R., Arboleda N. C., Cintra B. B. L., Valverde F. C., Di Fiore A., Phillips J. F., van Andel T. R., von Hildebrand P., Barbosa E. M., de Matos Bonates L. C., de Castro D., de Sousa Farias E., Gonzales T., Guillaumet J.-L., Hoffman B., Malhi Y., de Andrade Miranda I. P., Prieto A., Rudas A., Ruschell A. R., Silva N., Vela C. I. A., Vos V. A., Zent E. L., Zent S., Cano A., Nascimento M. T., Oliveira A. A., Ramirez-Angulo H., Ramos J. F., Sierra R., Tirado M., Medina M. N. U., van der Heijden G., Torre E. V., Vriesendorp C., Wang O., Young K. R., Baider C., Balslev H., de Castro N., Farfan-Rios W., Ferreira C., Mendoza C., Mesones I., Torres-Lezama A., Giraldo L. E. U., Villarroel D., Zagt R., Alexiades M. N., Garcia-Cabrera K., Hernandez L., Huamantupa-Chuquimaco I., Milliken W., Cuenca W. P., Pansini S., Pauletto D., Arevalo F. R., Sampaio A. F., Valderrama Sandoval E. H., Gamarra L. V., Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015). - PMC - PubMed
    1. Chazdon R. L., Peres C. A., Dent D., Sheil D., Lugo A. E., Lamb D., Stork N. E., Miller S. E., The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417 (2009). - PubMed
    1. Gardner T. A., Barlow J., Chazdon R., Ewers R. M., Harvey C. A., Peres C. A., Sodhi N. S., Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009). - PubMed
    1. Martin P. A., Newton A. C., Bullock J. M., Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. Biol. Sci. 280, 20132236 (2013). - PMC - PubMed

Publication types