Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019;19(2):136-146.
doi: 10.2174/1566524019666190308121552.

The Mitochondrial tRNAHis G12192A Mutation May Modulate the Clinical Expression of Deafness-Associated tRNAThr G15927A Mutation in a Chinese Pedigree

Affiliations

The Mitochondrial tRNAHis G12192A Mutation May Modulate the Clinical Expression of Deafness-Associated tRNAThr G15927A Mutation in a Chinese Pedigree

Yu Ding et al. Curr Mol Med. 2019.

Abstract

Background: Mutations in mitochondrial tRNA (mt-tRNA) genes have been found to be associated with both syndromic and non-syndromic hearing impairment. However, the pathophysiology underlying mt-tRNA mutations in clinical expression of hearing loss remains poorly understood.

Objective: The aim of this study was to explore the potential association between mttRNA mutations and hearing loss.

Methods and results: We reported here the molecular features of a pedigree with maternally transmitted non-syndromic hearing loss. Among 12 matrilineal relatives, five of them suffered variable degree of hearing impairment, but none of them had any medical history of using aminoglycosides antibiotics (AmAn). Genetic screening of the complete mitochondrial genomes from the matrilineal relatives identified the coexistence of mt-tRNAHis G12192A and mt-tRNAThr G15927A mutations, together with a set of polymorphisms belonging to human mitochondrial haplogroup B5b1b. Interestingly, the G12192A mutation occurred 2-bp from the 3' end of the TψC loop of mt-tRNAHis, which was evolutionarily conserved from various species. In addition, the well-known G15927A mutation, which disrupted the highly conserved C-G base-pairing at the anticodon stem of mt-tRNAThr, may lead to the failure in mt-tRNA metabolism. Furthermore, a significant decreased in ATP production and an increased ROS generation were observed in polymononuclear leukocytes (PMNs) which were isolated from the deaf patients carrying these mt-tRNA mutations, suggested that the G12192A and G15927A mutations may cause mitochondrial dysfunction that was responsible for deafness. However, the absence of any functional mutations/variants in GJB2, GJB3, GJB6 and TRMU genes suggested that the nuclear genes may not play important roles in the clinical expression of non-syndromic hearing loss in this family.

Conclusion: Our data indicated that mt-tRNAHis G12192A mutation may increase the penetrance and expressivity of deafness-associated m-tRNAThr G15927A mutation in this family.

Keywords: G12192A; G15927A; Non-syndromic hearing loss; clinical expression; mt-tRNA mutations; pathophysiology..

PubMed Disclaimer

Similar articles

Cited by

Publication types