Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;29(4):380-384.
doi: 10.1097/MOU.0000000000000617.

New concepts in regenerative medicine approaches to the treatment of female stress urinary incontinence

Affiliations

New concepts in regenerative medicine approaches to the treatment of female stress urinary incontinence

Julie Bennington et al. Curr Opin Urol. 2019 Jul.

Abstract

Purpose of review: Update on recent regenerative medicine approaches to the treatment of stress urinary incontinence (SUI) caused by intrinsic sphincter deficiency (ISD).

Recent findings: In the treatment of female SUI/ISD, results using different types of cellular therapy have been disappointing, and new approaches are desirable. To advance our regenerative medicine approaches to SUI/ISD, it is critical to utilize animal models that best parallel the pathophysiology of this disease in women. Many current animal models mimic acute SUI/ISD. However, SUI/ISD in women is usually a chronic condition resulting from previous muscle and nerve sphincter damage during parturition or muscle loss during aging. Similar to women, a nonhuman primate (NHP) model of chronic SUI/ISD has demonstrated only modest response to cell therapy. However, treatment with stromal cell-derived factor 1 (SDF1), also known as C-X-C motif chemokine 12 (CXCL12) restored continence in this model.

Summary: As a potential therapeutic approach, the use of a well characterized chemokine, such as CXCL12, may by-pass the lengthy and expensive process of cell isolation, expansion, and injection. Recent findings in this new NHP model of chronic SUI/ISD may open up the field for noncell-based treatments.

PubMed Disclaimer

Publication types