Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Book

Physiology, Somatostatin

In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan.
.
Affiliations
Free Books & Documents
Book

Physiology, Somatostatin

Timothy J. O'Toole et al.
Free Books & Documents

Excerpt

Somatostatin is a cyclic peptide well known for its strong regulatory effects throughout the body. Also known by the name of growth hormone inhibiting hormone, it is produced in many locations, which include the gastrointestinal (GI) tract, pancreas, hypothalamus, and central nervous system (CNS). Two active forms of the peptide exist, and they vary in length at fourteen amino acids and twenty-eight amino acids respectively. The two isoforms have considerable overlap in activity and differ primarily in their location of effect. The shorter isoform (14 amino acids) works primarily in the brain, while the longer (28 amino acids) form operates in the GI tract. Its half-life is between 1 to 3 minutes.

Somatostatin produces predominantly neuroendocrine inhibitory effects across multiple systems. It is known to inhibit GI, endocrine, exocrine, pancreatic, and pituitary secretions, as well as modify neurotransmission and memory formation in the CNS. It also prevents angiogenesis and has anti-proliferative effects on healthy and cancerous cells in human and animal models.

Due to its short half-life, somatostatin has been formulated exogenously in much more stable forms with a longer half-life; this allows for its primary clinical use, which is the treatment of neuroendocrine tumors (NET).

PubMed Disclaimer

Conflict of interest statement

Disclosure: Timothy O'Toole declares no relevant financial relationships with ineligible companies.

Disclosure: Sandeep Sharma declares no relevant financial relationships with ineligible companies.

References

    1. Cakir M, Dworakowska D, Grossman A. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 1--molecular pathways. J Cell Mol Med. 2010 Nov;14(11):2570-84. - PMC - PubMed
    1. Cakir M, Dworakowska D, Grossman A. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 2--clinical implications. J Cell Mol Med. 2010 Nov;14(11):2585-91. - PMC - PubMed
    1. Olarescu NC, Gunawardane K, Hansen TK, Møller N, Jørgensen JOL. Normal Physiology of Growth Hormone in Adults. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet] MDText.com, Inc.; South Dartmouth (MA): 2019. Oct 16, - PubMed
    1. Rorsman P, Huising MO. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat Rev Endocrinol. 2018 Jul;14(7):404-414. - PMC - PubMed
    1. Ito T, Igarashi H, Jensen RT. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances. Best Pract Res Clin Gastroenterol. 2012 Dec;26(6):737-53. - PMC - PubMed

Publication types

LinkOut - more resources