Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Apr 14;136(1):381-9.
doi: 10.1016/0006-291x(86)90922-8.

Activation of protein kinase C inhibits sodium fluoride-induced elevation of human platelet cytosolic free calcium and thromboxane B2 generation

Activation of protein kinase C inhibits sodium fluoride-induced elevation of human platelet cytosolic free calcium and thromboxane B2 generation

C Poll et al. Biochem Biophys Res Commun. .

Abstract

Addition of NaF to washed platelets produces a dose-dependent and transient elevation of the intracellular free calcium concentration ([Ca++]i), thromboxane B2 (TxB2) generation and dense granule release, all of which are significantly inhibited when the extracellular calcium concentration ([Ca++]e) is reduced with EGTA. Inhibition of platelet cyclo-oxygenase by acetylsalicylic acid (ASA) does not affect NaF-induced elevation of [Ca++]i and dense granule release in the presence of 1 mM [Ca++]e. Pre-incubation of the platelets with the phorbol ester TPA produces a marked inhibition of NaF-induced elevation of [Ca++]i and TxB2 generation without affecting dense granule release. Thus, NaF may have more than one site of action. Pretreatment of the platelets with the selective protein kinase C inhibitor H7 prevents TPA induced inhibition of NaF mediated rise in [Ca++]i and TxB2 generation. Thus we propose that NaF induced calcium mobilisation is analogous to receptor-operated calcium mobilisation in platelets, as it is readily inhibited by protein kinase C activation or by the reduction of [Ca++]e and is independent of platelet cyclo-oxygenase activity.

PubMed Disclaimer

Publication types

LinkOut - more resources