Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 3;141(13):5314-5325.
doi: 10.1021/jacs.8b13558. Epub 2019 Mar 25.

A Mono-cuboctahedral Series of Gold Nanoclusters: Photoluminescence Origin, Large Enhancement, Wide Tunability, and Structure-Property Correlation

Affiliations

A Mono-cuboctahedral Series of Gold Nanoclusters: Photoluminescence Origin, Large Enhancement, Wide Tunability, and Structure-Property Correlation

Qi Li et al. J Am Chem Soc. .

Abstract

The origin of the near-infrared photoluminescence (PL) from thiolate-protected gold nanoclusters (Au NCs, <2 nm) has long been controversial, and the exact mechanism for the enhancement of quantum yield (QY) in many works remains elusive. Meanwhile, based upon the sole steady-state PL analysis, it is still a major challenge for researchers to map out a definitive relationship between the atomic structure and the PL property and understand how the Au(0) kernel and Au(I)-S surface contribute to the PL of Au NCs. Herein, we provide a paradigm study to address the above critical issues. By using a correlated series of "mono-cuboctahedral kernel" Au NCs and combined analyses of steady-state, temperature-dependence, femtosecond transient absorption, and Stark spectroscopy measurements, we have explicitly mapped out a kernel-origin mechanism and clearly elucidate the surface-structure effect, which establishes a definitive atomic-level structure-emission relationship. A ∼100-fold enhancement of QY is realized via suppression of two effects: (i) the ultrafast kernel relaxation and (ii) the surface vibrations. The new insights into the PL origin, QY enhancement, wavelength tunability, and structure-property relationship constitute a major step toward the fundamental understanding and structural-tailoring-based modulation and enhancement of PL from Au NCs.

PubMed Disclaimer

Publication types

LinkOut - more resources