Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May;99(5):1501-11.
doi: 10.1093/oxfordjournals.jbchem.a135620.

Unfolding and refolding of the constant fragment of the immunoglobulin light chain containing an intramolecular mercury bridge

Free article

Unfolding and refolding of the constant fragment of the immunoglobulin light chain containing an intramolecular mercury bridge

Y Goto et al. J Biochem. 1986 May.
Free article

Abstract

The conformation of the constant fragment of the immunoglobulin light chain in which the intrachain disulfide bond is replaced by the bond S-Hg-S (CL-Hg fragment), was as compact as that of the intact CL fragment, but its stability to guanidine hydrochloride was lower than that of the intact CL fragment [Goto, Y. & Hamaguchi, K. (1986) Biochemistry in press]. The kinetics of reversible unfolding and refolding of the CL-Hg fragment by guanidine hydrochloride were studied and compared with those for the intact CL and reduced CL fragments [Goto, Y. & Hamaguchi, K. (1982) J. Mol. Biol. 156, 891-910, 911-926]. The unfolding kinetics were explained on the basis of a three-species mechanism, U1----U2----F, where U1 and U2 are respectively slow-folding and fast-folding species of unfolded protein, and F is folded protein. However, an additional isomerization, though its contribution to the overall reaction process is small, had to be taken into account to explain the refolding kinetics. The kinetic properties of interconversion between U1 and U2 were similar to those for the intact CL and reduced CL fragments. This suggested that the same prolyl residue is involved in the isomerization reactions in the unfolded states of the intact CL, reduced CL, and CL-Hg fragments. The rate constant for the unfolding process, F to U2, was about 20 times greater than those for the intact CL and reduced CL fragments, while the rate constant for the refolding process, U2 to F, lay between the values for the intact CL and the reduced CL fragment. The free energy profiles of unfolding and refolding of the intact CL, reduced CL, and CL-Hg fragments were compared.

PubMed Disclaimer

Similar articles