Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May;41(5):2945-2956.
doi: 10.3892/or.2019.7041. Epub 2019 Mar 4.

CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review)

Affiliations
Review

CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review)

Xiaofeng Li et al. Oncol Rep. 2019 May.

Abstract

Impaired antitumor immunity or induced immunosuppression in the tumor microenvironment contributes significantly to tumor progression and resistance to immunotherapy. It is becoming increasingly recognized that dynamic metabolic programming orchestrates appropriate immune responses, whereas incorrect metabolic reprogramming may underlie aberrant immune remodeling. Furthermore, pathways that control cellular metabolism and immune cell function by transcriptional and post‑transcriptional mechanisms are intimately interlinked, including hypo-xia‑inducible factor 1α, c‑Myc and phosphatidylinositol 3‑kinase/protein kinase B/mammalian target of rapamycin signaling. Immunometabolism is an emerging research field involving investigation of the interaction between immunological and metabolic processes. It is likely that high levels of nutrient competition and metabolic interplay exist between tumor cells and infiltrating immune cells in the local tumor milieu, which consequently leads to a reduction in antitumor immunity or immune cell dysfunction. Recently, a metabolic molecular mechanism responsible for the tumorigenic capacity of cluster of differentiation (CD)147, which exhibits high expression on the surface of various malignant tumor cells and is associated with tumor progression via multiple non‑metabolic molecular mechanisms, was identified. The aim of the present review was to focus on the glycolytic mechanism mediated by the upregulation of CD147 in tumors and tumor‑imposed metabolic restrictions on tumor‑infiltrating immune cells, and the consequent immunological hyporesponsiveness. Cellular metabolism is becoming increasingly acknowledged as a key regulator of T‑cell function, specification and fate, and the manipulation of metabolic programming may elucidate therapeutic options for immunological disorders and tumor immunotherapy.

PubMed Disclaimer

Similar articles

Cited by