Precision medicine for the discovery of treatable mechanisms in severe asthma
- PMID: 30865306
- DOI: 10.1111/all.13771
Precision medicine for the discovery of treatable mechanisms in severe asthma
Abstract
Although the complex disease of asthma has been defined as being heterogeneous, the extent of its endophenotypes remains unclear. The pharmacological approach to initiating treatment has, until recently, been based on disease control and severity. The introduction of antibody therapies targeting the Type 2 inflammation pathway for patients with severe asthma has resulted in the recognition of an allergic and an eosinophilic phenotype, which are not mutually exclusive. Concomitantly, molecular phenotyping based on a transcriptomic analysis of bronchial epithelial and sputum cells has identified a Type 2 high inflammation cluster characterized by eosinophilia and recurrent exacerbations, as well as Type 2 low clusters linked with IL-6 trans-signalling, interferon pathways, inflammasome activation and mitochondrial oxidative phosphorylation pathways. Systems biology approaches are establishing the links between these pathways or mechanisms, and clinical and physiologic features. Validation of these pathways contributes to defining endotypes and treatable mechanisms. Precision medicine approaches are necessary to link treatable mechanisms with treatable traits and biomarkers derived from clinical, physiologic and inflammatory features of clinical phenotypes. The deep molecular phenotyping of airway samples along with noninvasive biomarkers linked to bioinformatic and machine learning techniques will enable the rapid detection of molecular mechanisms that transgresses beyond the concept of treatable traits.
Keywords: eosinophilic asthma; precision medicine; severe asthma; systems biology.
© 2019 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
References
REFERENCES
-
- Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med. 2009;180:59-99.
-
- Bateman ED, Boushey HA, Bousquet J, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma ControL study. Am J Respir Crit Care Med. 2004;170:836-844.
-
- Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343-373.
-
- Green RH, Brightling CE, McKenna S, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet. 2002;360:1715-1721.
-
- Chung KF. Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies. J Intern Med. 2016;279:192-204.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
