Intraarticular senescent chondrocytes impair the cartilage regeneration capacity of mesenchymal stem cells
- PMID: 30867061
- PMCID: PMC6416972
- DOI: 10.1186/s13287-019-1193-1
Intraarticular senescent chondrocytes impair the cartilage regeneration capacity of mesenchymal stem cells
Abstract
Background: Senescent cells exert a significant influence over their surrounding cellular environment. Senescent chondrocytes (SnChos) were found to be accumulated in degenerated cartilage present in joints affected by osteoarthritis. The influence of SnChos on exogenously transplanted stem cells has yet to be reported.
Methods: In this study, we evaluated the interactions between SnChos and bone marrow mesenchymal stem cells (BMSCs) when co-cultured as well as in the intra-articular senescent microenvironment (IASM). The effect of IASM on cartilage regeneration was also assessed.
Results: It was found that a small fraction of SnChos induced BMSC cellular senescence and apoptosis. SnChos also inhibited proliferation, facilitated stemness, and suppressed chondrogenic differentiation of BMSCs. BMSCs induced the apoptosis of SnChos, reduced the proportion of SnChos, stimulated SnChos proliferation, and revealed a bidirectional effect on SnChos inflammaging. IASM significantly suppressed the survival, proliferation, and appropriate differentiation of grafted BMSCs in vivo, all of which impaired cartilage regeneration. Anti-senescence agent ABT-263 was able to partly rescue the cells from the negative effects of SnChos.
Conclusions: The SnChos and BMSCs interacted with each other at cellular senescence, apoptosis, proliferation, differentiation, and cell functions. This interaction impaired the cartilage repair of MSCs. Anti-senescence agent provided a possible solution for this impairment.
Keywords: Bone marrow mesenchymal stem cells (BMSCs); Cartilage repair; Intra-articular senescent microenvironment (IASM); Osteoarthritis (OA); Senescent chondrocytes (SnChos).
Conflict of interest statement
Ethics approval
All experiments involving animals were performed in accordance with guidelines approved by the IRB of Third Xiangya Hospital, Central South University (NO:2015-S056) and coincided with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures






Comment in
-
Taking in consideration the bystander effects of articular senescence.Ann Transl Med. 2019 Dec;7(Suppl 8):S386. doi: 10.21037/atm.2019.12.128. Ann Transl Med. 2019. PMID: 32016104 Free PMC article. No abstract available.
References
-
- Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi J, Elisseeff JH. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–781. doi: 10.1038/nm.4324. - DOI - PMC - PubMed
-
- Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, Kirkland JL. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci. 2017;72(6):780–785. - PMC - PubMed