Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul;20(7):417-431.
doi: 10.1038/s41576-019-0106-6.

Regulation of transposable elements by DNA modifications

Affiliations
Review

Regulation of transposable elements by DNA modifications

Özgen Deniz et al. Nat Rev Genet. 2019 Jul.

Erratum in

Abstract

Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as N6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.

PubMed Disclaimer

References

    1. Gregory, T. R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76, 65–101 (2001). - PubMed - DOI
    1. Jurka, J., Bao, W. & Kojima, K. K. Families of transposable elements, population structure and the origin of species. Biol. Direct 6, 44 (2011). - PubMed - PMC - DOI
    1. Sotero-Caio, C. G., Platt, R. N., Suh, A. & Ray, D. A. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 9, 161–177 (2017). - PubMed - PMC - DOI
    1. Feschotte, C. & Betrán, E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33, 817–831 (2017). - PubMed - PMC - DOI
    1. Joly-Lopez, Z. & Bureau, T. E. Exaptation of transposable element coding sequences. Curr. Opin. Genet. Dev. 49, 34–42 (2018). - PubMed - DOI

Publication types