The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally
- PMID: 30867583
- DOI: 10.1038/s41579-019-0160-2
The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally
Abstract
The discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents in 1977 changed our view of biology. Chemosynthetic bacteria and archaea form the foundation of vent ecosystems by exploiting the chemical disequilibrium between reducing hydrothermal fluids and oxidizing seawater, harnessing this energy to fix inorganic carbon into biomass. Recent research has uncovered fundamental aspects of these microbial communities, including their relationships with underlying geology and hydrothermal geochemistry, interactions with animals via symbiosis and distribution both locally in various habitats within vent fields and globally across hydrothermal systems in diverse settings. Although 'black smokers' and symbioses between microorganisms and macrofauna attract much attention owing to their novelty and the insights they provide into life under extreme conditions, habitats such as regions of diffuse flow, subseafloor aquifers and hydrothermal plumes have important roles in the global cycling of elements through hydrothermal systems. Owing to sharp contrasts in physical and chemical conditions between these various habitats and their dynamic, extreme and geographically isolated nature, hydrothermal vents provide a valuable window into the environmental and ecological forces that shape microbial communities and insights into the limits, origins and evolution of microbial life.
Similar articles
-
Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents.Proc Natl Acad Sci U S A. 2021 Jul 20;118(29):e2102674118. doi: 10.1073/pnas.2102674118. Proc Natl Acad Sci U S A. 2021. PMID: 34266956 Free PMC article.
-
The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.PLoS Biol. 2012 Jan;10(1):e1001234. doi: 10.1371/journal.pbio.1001234. Epub 2012 Jan 3. PLoS Biol. 2012. PMID: 22235194 Free PMC article.
-
Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.Mar Biotechnol (NY). 2016 Apr;18(2):232-41. doi: 10.1007/s10126-015-9683-3. Epub 2015 Dec 1. Mar Biotechnol (NY). 2016. PMID: 26626941
-
An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.Res Microbiol. 2015 Dec;166(10):742-52. doi: 10.1016/j.resmic.2015.04.001. Epub 2015 Apr 22. Res Microbiol. 2015. PMID: 25911507 Review.
-
Archaeal diversity and community development in deep-sea hydrothermal vents.Curr Opin Microbiol. 2011 Jun;14(3):282-91. doi: 10.1016/j.mib.2011.04.013. Epub 2011 May 23. Curr Opin Microbiol. 2011. PMID: 21602097 Review.
Cited by
-
Comparative Analysis of Intestinal Microflora Between Two Developmental Stages of Rimicaris kairei, a Hydrothermal Shrimp From the Central Indian Ridge.Front Microbiol. 2022 Feb 15;12:802888. doi: 10.3389/fmicb.2021.802888. eCollection 2021. Front Microbiol. 2022. PMID: 35242112 Free PMC article.
-
Marine biofilms: diversity, interactions and biofouling.Nat Rev Microbiol. 2022 Nov;20(11):671-684. doi: 10.1038/s41579-022-00744-7. Epub 2022 May 25. Nat Rev Microbiol. 2022. PMID: 35614346 Review.
-
Microbial gene expression in Guaymas Basin subsurface sediments responds to hydrothermal stress and energy limitation.ISME J. 2023 Nov;17(11):1907-1919. doi: 10.1038/s41396-023-01492-z. Epub 2023 Sep 1. ISME J. 2023. PMID: 37658181 Free PMC article.
-
Diverse Viruses in Deep-Sea Hydrothermal Vent Fluids Have Restricted Dispersal across Ocean Basins.mSystems. 2021 Jun 29;6(3):e0006821. doi: 10.1128/mSystems.00068-21. Epub 2021 Jun 22. mSystems. 2021. PMID: 34156293 Free PMC article.
-
Quantitative microbial taxonomy across particle size, depth, and oxygen concentration.Front Microbiol. 2025 May 23;16:1552305. doi: 10.3389/fmicb.2025.1552305. eCollection 2025. Front Microbiol. 2025. PMID: 40485829 Free PMC article.
References
-
- Baker, M. C. et al. in Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 161–182 (Blackwell Publishing Ltd., 2010).
-
- Dick, G. J. Genomic Approaches in Earth and Environmental Sciences (Wiley Blackwell, 2018).
-
- Nakamura, K. & Takai, K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog. Earth Plan. Sci. 1, 5 (2014). - DOI
-
- Baas Becking, L. Geobiologie of Inleiding Tot de Milieukunde [Dutch] (Den Haag: W. P. Van Stockum & Zoon, 1934).
-
- Reysenbach, A. L., Banta, A. B., Boone, D. R., Cary, S. C. & Luther, G. W. Microbial essentials at hydrothermal vents. Nature 404, 835 (2000). This paper highlights the importance of microenvironments in defining microbial niches along the steep chemical gradients that are found at hydrothermal vents. - PubMed - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources