Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 13;10(1):30.
doi: 10.1186/s13244-019-0718-6.

Vascular tumors in infants and adolescents

Affiliations
Review

Vascular tumors in infants and adolescents

Moritz Wildgruber et al. Insights Imaging. .

Abstract

Malignant vascular tumors as part of the vascular anomalies spectrum are extremely rare in children and young adults. Instead, benign vascular neoplasias are frequently encountered in the pediatric patient population. While vascular malformations are congenital vascular lesions, originating from a mesenchymal stem cell defect, vascular tumors are neoplastic transformations of endothelial and other vascular cells. The appropriate differential diagnosis and nomenclature according to the classification of the International Society for the Study of Vascular Anomalies (ISSVA) is decisive to initiate correct therapy. While infantile hemangioma can be routinely diagnosed by clinical means and rarely require therapy, more rare vascular tumors are frequently difficult to diagnose, require dedicated cross-sectional imaging, and benefit from an interdisciplinary treatment approach. The focus of this review is to provide an overview over the spectrum of vascular tumors, typical imaging characteristics, and summarize treatment options including interventional radiology approaches.

Keywords: Hemangioma; Imaging; Vascular anomalies; Vascular tumor.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Infantile hemangioma in an 8-month-old boy. The tumor is superficially visible through disseminated red papules (a). On MRI, the tumor showed a typical homogeneous signal on T2w (b) and a corresponding homogeneous enhancement after Gadolinium administration (c)
Fig. 2
Fig. 2
Infantile hemangioma in a 5-month-old boy invading the eyelid (a). The hemangioma exhibits a homogeneous architecture with only a few flow voids within the lesion (bd). Similarly, a homogeneous contrast enhancement is visible after gadolinium administration (eg). Two years later, the hemangioma involuted completely without any residual mass (h)
Fig. 3
Fig. 3
Rapid-involuting hemangioma (RICH) in a newborn. Ultrasound depicted a heterogeneous, fully developed mass invading large parts of the right liver lobe (a) with no flow-signal on Doppler ultrasound (b). MRI showed a rather homogeneous mass (c, d) with uniform enhancement after gadolinium administration (e). The tumor did not increase in size after birth and at the age of 8 months had decreases from 3.7 cm in maximum diameter at birth to 2.0 cm without the need for surgical or interventional treatment
Fig. 4
Fig. 4
Embolization therapy in large infantile hemangioma with extensive perfusion. In MRI, the hemangioma presents as a rather homogeneous, solid mass with central flow voids (a). Dynamic MR-A shows massive AV shunting during the early venous contrast phase (b). Transarterial particle embolization was performed to reduce the flow and induce a regression with a protection balloon in the draining vein (c)
Fig. 5
Fig. 5
Various presentations of a pyogenic granuloma in the auricle (a), at the umbilicus (b) and at the lip (c)
Fig. 6
Fig. 6
Kaposiform Hemangioendothelioma in a 13-month-old boy with moderate Kasabach-Merrit phenomenon (platelet count at 70,000/μl at admission). The boy presented with a large mass at the right upper arm, extending toward the elbow circumference of the distal humerus. The mass included severe purpura and ecchymoses, was tensely swollen with accompanying lymphedema (a). Arterial feeders to the lesion could be identified on MRA (b). A massive tumor blush was observed during the later arterial contrast phase (c). Fluid-sensitive sequences (d, e) revealed extended edema with characteristic septa perpendicular to the skin surface that showed contrast enhancement on delayed-phase T1w (f). Dilated veins were present around the primary tumor (g). Following an interdisciplinary consensus, it was decided to proceed with embolization, accompanied by treatment acetylsalicylate acid and sirolimus. Angiogram confirmed hypertrophic arterial feeders directed toward the lesion, but absent arterio-venous shunting (h). Onyx embolization was performed to exclude ~ 75% of the arterial tumor vasculature (i, j). Kasabach-Merrit phenomenon resolved with thrombocyte levels returned to normal 3 weeks after embolization. Three months after embolization and start of ASS and sirolimus treatment, the lesion had markedly regressed in size, the lymphedema had disappeared, and discoloration was regressing (k), 6 months later a mild discoloration persisted, without residual mass (l). Similarly, there was no relapse of the Kasabach-Merrit phenomenon
Fig. 7
Fig. 7
Epithelioid hemangioendothelioma of the liver in a 18-year-old woman. MR images depict diffuse spread of typical EHE tumor nodules over the entire liver. T2w (a), diffusion-weighted imaging (b), Dixon fat-water imaging in the early (c), and late phase (d) after administration of gadoxetic acid. Due to accompanying liver cirrhosis (child B), the patient rapidly developed progressive liver failure and could not undergo surgery or systemic therapy
Fig. 8
Fig. 8
Angiosarcoma of the abdominal aorta in a 22-year-old woman. Computed tomography angiography (CTA) depicts tumorous mass extending within the aortic lumen resembling thrombus or atheroma (a, b). The intraluminal mass however showed increased metabolic activity on 18F- FDG-PET/CT (c, d), indicative of a malignant tumor

References

    1. Adams DM, Brandão LR, Peterman CM et al (2018) Vascular anomaly cases for the pediatric hematologist oncologists—an interdisciplinary review. Pediatr Blood Cancer 65(1). 10.1002/pbc.26716 - PubMed
    1. Flors L, Leiva-Salinas C, Maged IM, et al. MR imaging of soft-tissue vascular malformations: diagnosis, classification, and therapy follow-up. Radiographics. 2011;31:1321–1340. doi: 10.1148/rg.315105213. - DOI - PubMed
    1. Müller-Wille R, Wildgruber M, Sadick M, Wohlgemuth WA (2018) Vascular anomalies (part II): interventional therapy of peripheral vascular malformations. Rofo. 10.1055/s-0044-101266 - PubMed
    1. Sadick M, Müller-Wille R, Wildgruber M, Wohlgemuth WA. Vascular anomalies (part I): classification and diagnostics of vascular anomalies. Rofo. 2018;190:825–835. doi: 10.1055/a-0620-8925. - DOI - PubMed
    1. Antonescu C. Malignant vascular tumors—an update. Mod Pathol. 2014;27(Suppl 1):S30–S38. doi: 10.1038/modpathol.2013.176. - DOI - PubMed

LinkOut - more resources