Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;85(8):846-853.
doi: 10.23736/S0375-9393.19.13133-1. Epub 2019 Mar 12.

An in-vitro study to evaluate high-volume low-pressure endotracheal tube cuff deflation dynamics

Affiliations
Free article

An in-vitro study to evaluate high-volume low-pressure endotracheal tube cuff deflation dynamics

Joan D Marti et al. Minerva Anestesiol. 2019 Aug.
Free article

Abstract

Background: High-volume low-pressure (HVLP) endotracheal tube (ETT) cuffs for critically ill patients often deflate during the course of mechanical ventilation. We performed an in-vitro study to comprehensively assess HVLP cuff deflation dynamics and potential preventive measures.

Methods: We evaluated 24-hour deflation of seven HVLP cuffs of cylindrical or tapered shape, and made of polyvinylchloride or polyurethane. Experiments were performed within a thermostated chamber set at 37 °C. In the first stage of experiments, the cuff pilot balloon valve was not manipulated. The cuff internal pressure was assessed hourly for 24 hours, via a linear position sensor which monitored cuff deflation displacements. Then, we re-evaluated cuff deflation of the worst-performing ETT cuffs with the cuff pilot balloon valve sealed. Finally, we inflated ETT cuffs within an artificial trachea to evaluate deflation dynamics during mechanical ventilation.

Results: Initial tests showed an exponential decrease in cuff internal pressure in five out of seven cuffs. Cuffs of cylindrical shape and made of polyurethane demonstrated the fastest deflation rates (P<0.050 vs. cuffs of conical shape and made of polyvinylchloride). When the cuff pilot balloon valve was not sealed, the internal cuff pressure deflation rate differed significantly among ETTs (P=0.005). Yet, upon sealing the cuff pilot balloon valve and during mechanical ventilation, cuff deflation rates decreased (P<0.050).

Conclusions: In controlled in-vitro settings, ETT cuffs consistently deflate over time, and the cuff pilot balloon valve plays a central role in this occurrence. Deflation rate decreases when cuffs are inflated within a plastic artificial tracheal model and mechanical ventilation is activated.

PubMed Disclaimer

Publication types

LinkOut - more resources