Gait mechanics contribute to exercise induced pain flares in knee osteoarthritis
- PMID: 30871519
- PMCID: PMC6419357
- DOI: 10.1186/s12891-019-2493-4
Gait mechanics contribute to exercise induced pain flares in knee osteoarthritis
Abstract
Background: Exercise-induced pain flares represent a significant barrier for individuals with knee osteoarthritis to meet physical activity recommendations. There is a need to understand factors that contribute to pain flares and the potential for the motor system to adapt and reduce joint loading should a flare occur. The study aim was to examine the impact of a bout of exercise on self-reported pain, walking mechanics and muscle co-contraction for participants with knee osteoarthritis.
Methods: Thirty-six adults (17 healthy older and 19 knee osteoarthritis) participated in this study. Self-reported pain, joint mechanics and muscle co-activation during gait at two self-selected speeds were collected before and after a 20-min preferred pace treadmill walk (20MTW).
Results: Eight of nineteen osteoarthritis participants had a clinically significant pain flare response to the 20MTW. At baseline the participants that did not experience a pain flare had smaller knee flexion and total reaction moments compared to both the participants with pain flares (p = 0.02; p = 0.05) and controls (p < 0.001; p < 0.001). In addition, the 2nd peak knee adduction (p = 0.01) and internal rotation (p = 0.001) moments were smaller in the no flares as compared to controls. The pain flare participants differed from controls with smaller knee internal rotation moments (p = 0.03), but greater relative hamstrings (vs. quadriceps) and medial (vs. lateral) muscle activation (p = 0.04, p = 0.04) compared to both controls and no flare participants (p = 0.04, p = 0.007). Following the 20MTW there were greater decreases in the 1st and 2nd peak knee adduction (p = 0.03; p = 0.02), and internal rotation (p = 0.002) moments for the pain flare as compared to the no flare group. In addition, for the pain flare as compared to controls, greater decreases in the knee flexion (p = 0.03) and internal rotation (p = 0.005) moments were found.
Conclusions: Individuals who adapt their gait to reduce knee joint loads may be less susceptible to exercise-induced pain flares. This highlights a potential role of gait biomechanics in short-term osteoarthritis pain fluctuations. The results also suggest that despite the chronic nature of osteoarthritis pain, the motor system's ability to respond to nociceptive stimuli remains intact.
Keywords: Exercise induced pain flare; muscle activation; Gait mechanics; Knee osteoarthritis.
Conflict of interest statement
Ethics approval and consent to participate
Approval from the University of Massachusetts-Amherst Institutional Review Board, Federal Wide Assurance # 00003909, was obtained for the protocol as reported in this manuscript.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures


References
-
- Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014;95(5):986–995.e1. doi: 10.1016/j.apmr.2013.10.032. - DOI - PMC - PubMed
-
- Sandal LF, Roos EM, Bogesvang SJ, Thorlund JB. Pain trajectory and exercise-induced pain flares during 8 weeks of neuromuscular exercise in individuals with knee and hip pain. Osteoarthr Cartil 2016 04;24(4):589–592. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Medical