Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr 10;17(15):3670-3708.
doi: 10.1039/c8ob03034k.

Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions

Affiliations
Review

Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions

Maxim G Vinogradov et al. Org Biomol Chem. .

Abstract

The prevalence of nitrogen containing heterocycles in natural products and pharmaceuticals is a doubtless fact. In this review, recent applications of a stereoselective aza-Michael reaction as an efficient tool for the asymmetric synthesis of naturally occurring nitrogen-containing heterocyclic scaffolds and their usefulness to pharmacology are reviewed and summarized. The available data are for the first time classified according to types of heterocyclic products and subdivided in accordance with synthetic methodologies used as key stereocontrolling steps (diastereoselective or enantioselective reactions, single bond-forming or cascade reactions, etc.). This classification is convenient for organic chemists and for researchers working in the areas of natural product synthesis and medicinal chemistry. Specific attention is paid to organocatalytic asymmetric versions of the aza-Michael reaction developed over the past decade.

PubMed Disclaimer

MeSH terms

LinkOut - more resources