Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 15;18(1):41.
doi: 10.1186/s12943-019-1001-7.

Exosomes in gastric cancer: roles, mechanisms, and applications

Affiliations
Review

Exosomes in gastric cancer: roles, mechanisms, and applications

Min Fu et al. Mol Cancer. .

Abstract

Exosomes are nanosized extracellular vesicles that can be released by almost all types of cells. Initially considered as the garbage bins acting to discard unwanted products of cells, exosomes are now recognized as an important way for cellular communication by transmitting bioactive molecules including proteins, DNA, mRNAs, and non-coding RNAs. The recent studies have shown that exosomes are critically involved in human health and diseases including cancer. Exosomes have been suggested to participate in the promotion of tumorigenesis, tumor growth and metastasis, tumor angiogenesis, tumor immune escape, and tumor therapy resistance. Increasing evidence indicate that exosomes play important roles in gastric cancer development and progression. In this review, we summarized the current understanding of exosomes in gastric cancer with an emphasis on the biological roles of exosomes in gastric cancer and their potential as biomarkers for gastric cancer diagnosis as well as potential targets for gastric cancer therapy.

Keywords: Biomarker; Exosomes; Gastric cancer; Progression; Target.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

All of the authors are aware of and agree to the content of the paper and their being listed as a co-author of the paper.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The biogenesis and contents of exosomes. The inward budding of the plasma membrane leads to the formation of early endosomes with membrane proteins incorporated. Then the invagination of endosomes and the enclosing of selected cargos including nucleic acids and proteins results in the generation of multivesicular bodies (MVBs), through either ESCRT-dependent or ESCRT-independent mechanisms. Subsequently, these MVBs fuse with plasma membrane and release exosomes into extracellular place. Exosomes release these cargos (proteins, mRNAs, miRNAs, lncRNAs, circRNAs and DNAs) to the recipient cells via mechanisms including a) direct fusion, b) binding with surface proteins, and c) endocytosis
Fig. 2
Fig. 2
Roles of tumor cells derived exosomes in GC. Exosomes are critically involved in GC progression including tumorigenesis, metastasis, angiogenesis, immune evasion and drug resistance by transferring functional biomolecules. GC cells derived exosomes can modulate immunity by activating pro-tumor phenotypes of neutrophils and macrophages and inducing the differentiation of T cells to Th17 and Treg cells. GC cells derived exosomes can convert pericytes, fibroblasts and MSCs into myofibroblasts to facilitate tumor angiogenesis and metastasis. Moreover, GC cells derived exosomes can activate endothelial cells to support tumor angiogenesis and promote significant adhesion between mesothelial and GC cells. GC cells derived exosomes can help to create a favorable microenvironment for liver metastasis by acting on liver stromal cells. In addition, pre-adipocytes prefer to differentiate into brown-like type by GC cells derived exosomes

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet) Cancer Cell. 2017;31:172–179. doi: 10.1016/j.ccell.2017.01.002. - DOI - PubMed
    1. Kalra H, Drummen GP, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17:170. doi: 10.3390/ijms17020170. - DOI - PMC - PubMed
    1. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–1232. doi: 10.1016/j.cell.2016.01.043. - DOI - PubMed
    1. Zhang X, Shi H, Yuan X, Jiang P, Qian H, Xu W. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 2018;17:146. doi: 10.1186/s12943-018-0898-6. - DOI - PMC - PubMed

Publication types