Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2019 Mar 19;8(6):e007201.
doi: 10.1161/JAHA.117.007201.

Coronary Calcium Characteristics as Predictors of Major Adverse Cardiac Events in Symptomatic Patients: Insights From the CORE 320 Multinational Study

Affiliations
Multicenter Study

Coronary Calcium Characteristics as Predictors of Major Adverse Cardiac Events in Symptomatic Patients: Insights From the CORE 320 Multinational Study

Mallory S Lo-Kioeng-Shioe et al. J Am Heart Assoc. .

Abstract

Background The predictive value of coronary artery calcium ( CAC ) has been widely studied; however, little is known about specific characteristics of CAC that are most predictive. We aimed to determine the independent associations of Agatston score, CAC volume, CAC area, CAC mass, and CAC density score with major adverse cardiac events in patients with suspected coronary artery disease. Methods and Results A total of 379 symptomatic participants, aged 45 to 85 years, referred for invasive coronary angiography, who underwent coronary calcium scanning and computed tomography angiography as part of the CORE 320 (Combined Noninvasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography) study, were included. Agatston score, CAC volume, area, mass, and density were computed on noncontrast images. Stenosis measurements were made on contrast-enhanced images. The primary outcome of 2-year major adverse cardiac events (30 revascularizations [>182 days of index catheterization], 5 myocardial infarctions, 1 cardiac death, 9 hospitalizations, and 1 arrhythmia) occurred in 32 patients (8.4%). Associations were estimated using multivariable proportional means models. Median age was 62 (interquartile range, 56-68) years, 34% were women, and 56% were white. In separate models, the Agatston, volume, and density scores were all significantly associated with higher risk of major adverse cardiac events after adjustment for age, sex, race, and statin use; density was the strongest predictor in all CAC models. CAC density did not provide incremental value over Agatston score after adjustment for diameter stenosis, age, sex, and race. Conclusions In symptomatic patients, CAC density was the strongest independent predictor of major adverse cardiac events among CAC scores, but it did not provide incremental value beyond the Agatston score after adjustment for diameter stenosis.

Keywords: calcium density; cardiac computed tomography; coronary artery calcium; coronary artery disease; prognosis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
An illustration of 2 cases with comparable Agatston scores and different coronary artery calcium (CAC) density scores. Panel 1 depicts cardiac computed tomographic images, showing low‐density calcified plaque of a 44‐year‐old symptomatic man, with a body mass index of 26.5 kg/m2, referred for invasive angiography for suspected coronary artery disease. The Agatston score and CAC density score are 113 and 1.67, respectively. Panel 1 includes stented segments that were not calculated as part of the coronary calcium score. Panel 2 depicts similar images of a 64‐year‐old symptomatic woman, with a body mass index of 24.8 kg/m2, with high‐density calcified plaque, yielding an Agatston score of 107 and a CAC density score of 3.57. A, The left coronary circulation. B, The right coronary circulation.

Similar articles

Cited by

References

    1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–832. - PubMed
    1. Gepner AD, Young R, Delaney JA, Tattersall MC, Blaha MJ, Post WS, Gottesman RF, Kronmal R, Budoff MJ, Burke GL, Folsom AR, Liu K, Kaufman J, Stein JH. Comparison of coronary artery calcium presence, carotid plaque presence, and carotid intima‐media thickness for cardiovascular disease prediction in the Multi‐Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging. 2015;8:e002262. - PMC - PubMed
    1. Folsom AR, Kronmal RA, Detrano RC, O'Leary DH, Bild DE, Bluemke DA, Budoff MJ, Liu K, Shea S, Szklo M, Tracy RP, Watson KE, Burke GL. Coronary artery calcification compared with carotid intima‐media thickness in the prediction of cardiovascular disease incidence: the Multi‐Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168:1333–1339. - PMC - PubMed
    1. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O'Leary D, Carr JJ, Goff DC, Greenland P, Herrington DM. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate‐risk individuals. JAMA. 2012;308:788–795. - PMC - PubMed
    1. McClelland RL, Jorgensen NW, Budoff M, Blaha MJ, Post WS, Kronmal RA, Bild DE, Shea S, Liu K, Watson KE, Folsom AR, Khera A, Ayers C, Mahabadi AA, Lehmann N, Jockel KH, Moebus S, Carr JJ, Erbel R, Burke GL. 10‐Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi‐Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66:1643–1653. - PMC - PubMed

Publication types

MeSH terms