Role of the global regulator Rex in control of NAD+ -regeneration in Clostridioides (Clostridium) difficile
- PMID: 30882947
- PMCID: PMC6561804
- DOI: 10.1111/mmi.14245
Role of the global regulator Rex in control of NAD+ -regeneration in Clostridioides (Clostridium) difficile
Abstract
For the human pathogen Clostridioides (also known as Clostridium) difficile, the ability to adapt to nutrient availability is critical for its proliferation and production of toxins during infection. Synthesis of the toxins is regulated by the availability of certain carbon sources, fermentation products and amino acids (e.g. proline, cysteine, isoleucine, leucine and valine). The effect of proline is attributable at least in part to its role as an inducer and substrate of D-proline reductase (PR), a Stickland reaction that regenerates NAD+ from NADH. Many Clostridium spp. use Stickland metabolism (co-fermentation of pairs of amino acids) to generate ATP and NAD+ . Synthesis of PR is activated by PrdR, a proline-responsive regulatory protein. Here we report that PrdR, in the presence of proline, represses other NAD+ -generating pathways, such as the glycine reductase and succinate-acetyl CoA utilization pathways leading to butyrate production, but does so indirectly by affecting the activity of Rex, a global redox-sensing regulator that responds to the NAD+ /NADH ratio. Our results indicate that PR activity is the favored mechanism for NAD+ regeneration and that both Rex and PrdR influence toxin production. Using the hamster model of C. difficile infection, we revealed the importance of PrdR-regulated Stickland metabolism in the virulence of C. difficile.
© 2019 John Wiley & Sons Ltd.
Figures










Similar articles
-
Proline-dependent regulation of Clostridium difficile Stickland metabolism.J Bacteriol. 2013 Feb;195(4):844-54. doi: 10.1128/JB.01492-12. Epub 2012 Dec 7. J Bacteriol. 2013. PMID: 23222730 Free PMC article.
-
Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.J Bacteriol. 2006 Dec;188(24):8487-95. doi: 10.1128/JB.01370-06. Epub 2006 Oct 13. J Bacteriol. 2006. PMID: 17041035 Free PMC article.
-
Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway.J Bacteriol. 2020 Sep 23;202(20):e00233-20. doi: 10.1128/JB.00233-20. Print 2020 Sep 23. J Bacteriol. 2020. PMID: 32967909 Free PMC article.
-
Metabolism the Difficile Way: The Key to the Success of the Pathogen Clostridioides difficile.Front Microbiol. 2019 Feb 15;10:219. doi: 10.3389/fmicb.2019.00219. eCollection 2019. Front Microbiol. 2019. PMID: 30828322 Free PMC article. Review.
-
Integration of metabolism and virulence in Clostridium difficile.Res Microbiol. 2015 May;166(4):375-83. doi: 10.1016/j.resmic.2014.10.002. Epub 2014 Oct 15. Res Microbiol. 2015. PMID: 25445566 Free PMC article. Review.
Cited by
-
NAD+ pool depletion as a signal for the Rex regulon involved in Streptococcus agalactiae virulence.PLoS Pathog. 2021 Aug 9;17(8):e1009791. doi: 10.1371/journal.ppat.1009791. eCollection 2021 Aug. PLoS Pathog. 2021. PMID: 34370789 Free PMC article.
-
The multiplicity of thioredoxin systems meets the specific lifestyles of Clostridia.PLoS Pathog. 2024 Feb 8;20(2):e1012001. doi: 10.1371/journal.ppat.1012001. eCollection 2024 Feb. PLoS Pathog. 2024. PMID: 38330058 Free PMC article.
-
Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation.NPJ Biofilms Microbiomes. 2022 Nov 30;8(1):94. doi: 10.1038/s41522-022-00358-0. NPJ Biofilms Microbiomes. 2022. PMID: 36450806 Free PMC article.
-
Food for thought-The link between Clostridioides difficile metabolism and pathogenesis.PLoS Pathog. 2023 Jan 5;19(1):e1011034. doi: 10.1371/journal.ppat.1011034. eCollection 2023 Jan. PLoS Pathog. 2023. PMID: 36602960 Free PMC article. Review.
-
Unveiling the inhibition mechanism of Clostridioides difficile by Bifidobacterium longum via multiomics approach.Front Microbiol. 2023 Nov 8;14:1293149. doi: 10.3389/fmicb.2023.1293149. eCollection 2023. Front Microbiol. 2023. PMID: 38029200 Free PMC article.
References
-
- Antunes A, Martin-Verstraete I & Dupuy B, (2011) CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol 79: 882–899. - PubMed
-
- Bailey TL & Elkan C, (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36. - PubMed
-
- Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till LM, Huq L, Smits SA, Moor WJ, Jones-Hall Y, Smyrk T, Khanna S, Pardi DS, Grover M, Patel R, Chia N, Nelson H, Sonnenburg JL, Farrugia G & Kashyap PC, (2018) Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Science translational medicine 10. - PMC - PubMed
-
- Benjamini Y & Hochberg Y, (1995) Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous