Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 23;13(4):4199-4208.
doi: 10.1021/acsnano.8b09198. Epub 2019 Mar 27.

Large-Scale and Low-Cost Fabrication of Silicon Mie Resonators

Affiliations

Large-Scale and Low-Cost Fabrication of Silicon Mie Resonators

Wajdi Chaâbani et al. ACS Nano. .

Abstract

High index dielectric nanoparticles have been proposed for many different applications. However, widespread utilization in practice also requires large-scale production methods for crystalline silicon nanoparticles, with engineered optical properties in a low-cost manner. Here, we demonstrate a facile, low-cost, and large-scale fabrication method of crystalline silicon colloidal Mie resonators in water, using a blender. The obtained nanoparticles are polydisperse with an almost spherical shape and the diameters controlled in the range 100-200 nm by a centrifugation process. Then the size distribution of silicon nanoparticles enables broad extinction from UV to near-infrared, confirmed by Mie theory when considering the size distribution in the calculations. Thanks to photolithographic and drop-cast deposition techniques to locate the position on a substrate of the colloidal nanoparticles, we experimentally demonstrate that the individual silicon nanoresonators show strong electric and magnetic Mie resonances in the visible range.

Keywords: Mie resonances; colloidal solution; high-index dielectric; large scale; low cost; silicon nanoparticles.

PubMed Disclaimer

LinkOut - more resources