Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 18;19(1):41.
doi: 10.1186/s12876-019-0958-4.

The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose

Affiliations

The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose

Gao Sun et al. BMC Gastroenterol. .

Abstract

Background: Metabolic disorders such as insulin resistance, obesity, and hyperglycemia are prominent risk factors for the development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH). Dietary rodent models employ high fat, high cholesterol, high fructose, methionine/choline deficient diets or combinations of these to induce NAFLD/NASH. The FATZO mice spontaneously develop the above metabolic disorders and type 2 diabetes (T2D) when fed with a normal chow diet. The aim of the present study was to determine if FATZO mice fed a high fat and fructose diet would exacerbate the progression of NAFLD/NASH.

Methods: Male FATZO mice at the age of 8 weeks were fed with high fat Western diet (D12079B) supplemented with 5% fructose in the drinking water (WDF) for the duration of 20 weeks. The body weight, whole body fat content, serum lipid profiles and liver function markers were examined monthly along with the assessment of liver histology for the development of NASH. In addition, the effects of obeticholic acid (OCA, 30 mg/kg, QD) on improvement of NASH progression in the model were evaluated.

Results: Compared to normal control diet (CD), FATZO mice fed with WDF were heavier with higher body fat measured by qNMR, hypercholesterolemia and had progressive elevations in AST (~ 6 fold), ALT (~ 6 fold), liver over body weight (~ 2 fold) and liver triglyceride (TG) content (1.4-2.9 fold). Histological examination displayed evidence of NAFLD/NASH, including hepatic steatosis, lobular inflammation, ballooning and fibrosis in FATZO mice fed WDF. Treatment with OCA for 15 weeks in FATZO mice on WDF significantly alleviated hypercholesterolemia and elevation of AST/ALT, reduced liver weight and liver TG contents, attenuated hepatic ballooning, but did not affect body weight and blood TG levels.

Conclusion: WDF fed FATZO mice represent a new model for the study of progressive NAFLD/NASH with concurrent metabolic dysregulation.

Keywords: FATZO mouse; Liver disease; Metabolic disease; NAFLD; NASH.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

All animal experiments in the study were approved by the Institutional Animal Care and Use Committee at Crown Bioscience – Indiana (IACUC protocol number: 2015–230).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Development of NAFLD/NASH in FATZO mice fed with CD or WDF diet. (a) Body weight, (b) body fat, (c) total cholesterol, (d) triglyceride, (e) ALT, (f) AST, (g) liver weight, and (h) hepatic triglyceride content in FATZO mice fed with CD or WDF for 20 weeks. Data were presented as mean ± SEM. ap < 0.05, aaap < 0.005 vs vehicle controls using two-way ANOVA with Dunnett’s post-hoc comparison
Fig. 2
Fig. 2
Histological evidence of NAFLD/NASH in FATZO mice fed WDF. Representative images of H&E and Picro Sirius Red (PSR) staining of livers removed from FATZO mice fed WDF or CD for 4, 16 and 20 weeks. formula imageDenotes steatosis, formula imagedenotes ballooning, formula imagedenotes lobular inflammation and formula imagedenotes fibrosis
Fig. 3
Fig. 3
NASH scoring of the liver from WDF or CD fed FATZO mice for 16 and 20 weeks. (a) Steatosis, (b) hepatic ballooning, (c) lobular inflammation, (d) Fibrosis and (e) NAS scores. Data were presented as mean ± SEM. ap < 0.05vs vehicle controls using two-way ANOVA with Dunnett’s post-hoc comparison
Fig. 4
Fig. 4
OCA treatment improves liver function and lipid metabolism in FATZO mice fed WDF. (a) Body weight, (b) blood triglyceride, (c) total cholesterol, (d) LDL, (e) ALT, (f) AST, (g) liver weight, and (h) hepatic triglyceride content in WDF fed FATZO mice treated with vehicle or OCA (30 mg/kg, QD). Data were presented as mean ± SEM. ap < 0.05, aap < 0.01, aaap < 0.005vs vehicle controls using two-way ANOVA with Dunnett’s post hoc comparison (a-f) or unpaired student t-test (g, h)
Fig. 5
Fig. 5
OCA treatment improves hepatic ballooning in NASH FATZO mice. Representative images of H&E and Picro Sirius Red (PSR) staining of the livers removed from NAFLD/NASH FATZO mice treated with OCA or vehicle for 15 weeks
Fig. 6
Fig. 6
Histological improvement of WDF fed FATZO mice treated with OCA. (a) Hepatic ballooning, (b) Steatosis, (c) Lobular inflammation, (d) Fibrosis and (e) NAS score. Data were presented as mean ± SEM. aaap < 0.005 vs vehicle controls, using unpaired student t-test

Similar articles

Cited by

References

    1. Mohan V, Farooq S, Deepa M, Ravikumar R, Pitchumoni CS. Prevalence of non-alcoholic fatty liver disease in urban south Indians in relation to different grades of glucose intolerance and metabolic syndrome. Diabetes Res Clin Pract. 2009;84:84–91. doi: 10.1016/j.diabres.2008.11.039. - DOI - PubMed
    1. Riordan JD, Nadeau JH. Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse. Mamm Genome. 2014;25:473–486. doi: 10.1007/s00335-014-9521-3. - DOI - PMC - PubMed
    1. Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:221–235. doi: 10.1055/s-0035-1562943. - DOI - PubMed
    1. Kanwar P, Nelson JE, Yates K, Kleiner DE, Unalp-Arida A. Kowdley KVAssociation between metabolic syndrome and liver histology among NAFLD patients without diabetes. BMJ Open Gastroenterol. 3:e000114. - PMC - PubMed
    1. Rector RS, Thyfault JP, Wei Y, Ibdah JA. Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J Gastroenterol. 2008;14:185–192. doi: 10.3748/wjg.14.185. - DOI - PMC - PubMed

MeSH terms