AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles with Highly Enhanced Photodynamic Performance
- PMID: 30886811
- PMCID: PMC6402395
- DOI: 10.1002/advs.201802050
AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles with Highly Enhanced Photodynamic Performance
Abstract
The singlet oxygen (1O2) generation ability of a photosensitizer (PS) is pivotal for photodynamic therapy (PDT). Transition metal complexes are effective PSs, owing to their high 1O2 generation ability. However, non-negligible cellular toxicity, poor biocompatibility, and easy aggregation in water limit their biomedical applications. In this work, a series of red-emitting aggregation-induced emission (AIE) Ir(III) complexes containing different numbers of Ir centers (mono-, di-, and trinuclear) and the corresponding nanoparticles (NPs) AIE-NPs, are designed and synthesized. The increase of 1O2 generation ability is in line with the increasing number of Ir centers. Compared with the pure Ir(III) complexes, the corresponding NPs offer multiple advantages: (i) brighter emission; (ii) higher phosphorescence quantum yields; (iii) longer excited lifetime; (iv) higher 1O2 generation ability; (v) better biocompatibility; and (vi) superior cellular uptake. Both in vitro and in vivo experiments corroborate that AIE-NPs with three iridium centers possess potent cytotoxicity toward cancer cells and effective inhibition of tumor growth. To the best of knowledge, this work is the first example of NPs of multinuclear AIE Ir(III) complexes as PSs for enhanced PDT. This study offers a new method to improve the efficiency of PSs for clinical cancer treatments.
Keywords: aggregation‐induced emission; in vivo; multinuclear Ir(III) complexes; nanoparticles; photodynamic therapy.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Near-infrared-emitting AIE multinuclear cationic Ir(III) complex-assembled nanoparticles for photodynamic therapy.Dalton Trans. 2020 Nov 10;49(43):15332-15338. doi: 10.1039/d0dt02962a. Dalton Trans. 2020. PMID: 33119005
-
AIE-active Ir(III) complexes as type-I dominant photosensitizers for efficient photodynamic therapy.Dalton Trans. 2023 Jan 24;52(4):1105-1112. doi: 10.1039/d2dt03404b. Dalton Trans. 2023. PMID: 36602243
-
AIE-active Ir(III) complexes functionalised with a cationic Schiff base ligand: synthesis, photophysical properties and applications in photodynamic therapy.Dalton Trans. 2022 Nov 1;51(42):16119-16125. doi: 10.1039/d2dt02960j. Dalton Trans. 2022. PMID: 36218133
-
Luminescent AIE Dots for Anticancer Photodynamic Therapy.Front Chem. 2021 May 25;9:672917. doi: 10.3389/fchem.2021.672917. eCollection 2021. Front Chem. 2021. PMID: 34113602 Free PMC article. Review.
-
Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical.J Nanobiotechnology. 2022 Jul 26;20(1):344. doi: 10.1186/s12951-022-01553-z. J Nanobiotechnology. 2022. PMID: 35883086 Free PMC article. Review.
Cited by
-
Adaptive changes induced by noble-metal nanostructures in vitro and in vivo.Theranostics. 2020 Apr 27;10(13):5649-5670. doi: 10.7150/thno.42569. eCollection 2020. Theranostics. 2020. PMID: 32483410 Free PMC article. Review.
-
Rational design of iridium-porphyrin conjugates for novel synergistic photodynamic and photothermal therapy anticancer agents.Chem Sci. 2021 Mar 29;12(16):5918-5925. doi: 10.1039/d1sc00126d. eCollection 2021 Apr 28. Chem Sci. 2021. PMID: 35342539 Free PMC article.
-
Enhanced three-photon activity triggered by the AIE behaviour of a novel terpyridine-based Zn(ii) complex bearing a thiophene bridge.Chem Sci. 2019 Jun 11;10(30):7228-7232. doi: 10.1039/c9sc01705d. eCollection 2019 Aug 14. Chem Sci. 2019. PMID: 31588291 Free PMC article.
-
Cascade-activatable NO release based on GSH-detonated "nanobomb" for multi-pathways cancer therapy.Mater Today Bio. 2022 May 13;14:100288. doi: 10.1016/j.mtbio.2022.100288. eCollection 2022 Mar. Mater Today Bio. 2022. PMID: 35647513 Free PMC article.
-
Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting.Biosensors (Basel). 2022 Nov 16;12(11):1027. doi: 10.3390/bios12111027. Biosensors (Basel). 2022. PMID: 36421144 Free PMC article. Review.
References
-
- a) Gao F. L., Sun M. Z., Ma W., Wu X. L., Liu L. Q., Kuang H., Xu C. L., Adv. Mater. 2017, 29, 1606864; - PubMed
- b) Huang L., Li Z. J., Zhao Y., Yang J. Y., Yang Y. C., Pendharkar A. I., Zhang Y. W., Kelmar S., Chen L. Y., Wu W. T., Zhao J. Z., Han G., Adv. Mater. 2017, 29, 1604789; - PMC - PubMed
- c) Ma Y., Li X. Y., Li A. J., Yang P., Zhang C. Y., Tang B., Angew. Chem., Int. Ed. 2017, 56, 13752. - PubMed
-
- a) Jia Q. Y., Ge J. C., Liu W. M., Zheng X. L., Chen S. Q., Wen Y. M., Zhang H. Y., Wang P. F., Adv. Mater. 2018, 30, 1706090; - PubMed
- b) Zheng X., Wang L., Pei Q., He S., Liu S., Xie Z., Chem. Mater. 2017, 29, 2374;
- c) Gilson R. C., Black K. C. L., Lane D. D., Achilefu S., Angew. Chem., Int. Ed. 2017, 56, 10717. - PMC - PubMed
-
- a) He H., Ji S. S., He Y., Zhu A. J., Zou Y. L., Deng Y. B., Ke H. T., Yang H., Zhao Y. L., Guo Z. Q., Chen H. B., Adv. Mater. 2017, 29, 1606690;
- b) Yu B., Goel S., Ni D. L., Ellison P. A., Siamof C. M., Jiang D. W., Cheng L., Kang L., Yu F. Q., Liu Z., Barnhart T. E., He Q. J., Zhang H., Cai W. B., Adv. Mater. 2018, 30, 1704934; - PMC - PubMed
- c) Yu B., Wei H., He Q. J., Ferreira C. A., Kutyreff C. J., Ni D. L., Rosenkrans Z. T., Cheng L., Yu F. Q., Engle J. W., Lan X. L., Cai W. B., Angew. Chem., Int. Ed. 2018, 57, 218; - PMC - PubMed
- d) Zhang W., Lin W., Zheng X., He S., Xie Z., Chem. Mater. 2017, 29, 1856;
- e) Li Y. Y., Hu X. L., Zheng X. H., Liu Y., Liu S., Yue Y., Xie Z. G., RSC Adv. 2018, 8, 5493; - PMC - PubMed
- f) Ye S. Y., Rao J. M., Qiu S. H., Zhao J. L., He H., Yan Z. L., Yang T., Deng Y. B., Ke H. T., Yang H., Zhao Y. L., Guo Z. Q., Chen H. B., Adv. Mater. 2018, 30, 1801216. - PubMed
-
- Nam J. S., Kang M. G., Kang J., Park S. Y., Lee S. J. C., Kim H. T., Seo J. K., Kwon O. H., Lim M. H., Rhee H. W., Kwon T. H., J. Am. Chem. Soc. 2016, 138, 10968. - PubMed
-
- a) Zheng X., Wang L., Liu S., Zhang W., Liu F., Xie Z., Adv. Funct. Mater. 2018, 28, 1706507;
- b) Chakrabortty S., Agrawalla B. K., Stumper A., Veg N. M., Fischer S., Reichardt C., Kogler M., Dietzek B., Feuring‐Buske M., Buske C., Rau S., Weil T., J. Am. Chem. Soc. 2017, 139, 2512; - PMC - PubMed
- c) Li Y. S., Shao A. D., Wang Y., Mei J., Niu D. C., Gu J. L., Shi P., Zhu W. H., Tian H., Shi J. L., Adv. Mater. 2016, 28, 3187. - PubMed
LinkOut - more resources
Full Text Sources