Triheptanoin alters [U-13C6]-glucose incorporation into glycolytic intermediates and increases TCA cycling by normalizing the activities of pyruvate dehydrogenase and oxoglutarate dehydrogenase in a chronic epilepsy mouse model
- PMID: 30890077
- PMCID: PMC7026856
- DOI: 10.1177/0271678X19837380
Triheptanoin alters [U-13C6]-glucose incorporation into glycolytic intermediates and increases TCA cycling by normalizing the activities of pyruvate dehydrogenase and oxoglutarate dehydrogenase in a chronic epilepsy mouse model
Abstract
Triheptanoin is anticonvulsant in several seizure models. Here, we investigated changes in glucose metabolism by triheptanoin interictally in the chronic stage of the pilocarpine mouse epilepsy model. After injection of [U-13C6]-glucose (i.p.), enrichments of 13C in intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were quantified in hippocampal extracts and maximal activities of enzymes in each pathway were measured. The enrichment of 13C glucose in plasma was similar across all groups. Despite this, we observed reductions in incorporation of 13C in several glycolytic intermediates compared to control mice suggesting glucose utilization may be impaired and/or glycogenolysis increased in the untreated interictal hippocampus. Triheptanoin prevented the interictal reductions of 13C incorporation in most glycolytic intermediates, suggesting it increased glucose utilization or - as an additional astrocytic fuel - it decreased glycogen breakdown. In the TCA cycle metabolites, the incorporation of 13C was reduced in the interictal state. Triheptanoin restored the correlation between 13C enrichments of pyruvate relative to most of the TCA cycle intermediates in "epileptic" mice. Triheptanoin also prevented the reductions of hippocampal pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities. Decreased glycogen breakdown and increased glucose utilization and metabolism via the TCA cycle in epileptogenic brain areas may contribute to triheptanoin's anticonvulsant effects.
Keywords: Glucose metabolism; anaplerosis; medium chain fatty acid; pilocarpine; temporal lobe epilepsy.
Figures
References
-
- Gama IR, Trindade-Filho EM, Oliveira SL, et al.Effects of ketogenic diets on the occurrence of pilocarpine-induced status epilepticus of rats. Metab Brain Dis 2015; 30: 93–98. - PubMed
-
- Kim TH, Borges K, Petrou S, et al.Triheptanoin reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res 2013; 103: 101–105. - PubMed
-
- Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis 2006; 29: 327–331. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
