Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 5:10:417.
doi: 10.3389/fmicb.2019.00417. eCollection 2019.

N6-Methyladenosine and Viral Infection

Affiliations
Review

N6-Methyladenosine and Viral Infection

Wei Dang et al. Front Microbiol. .

Abstract

N6-methyladenosine (m6A), as a dynamic posttranscriptional RNA modification, recently gave rise to the field of viral epitranscriptomics. The interaction between virus and host is affected by m6A. Multiple m6A-modified viral RNAs have been observed. The epitranscriptome of m6A in host cells are altered after viral infection. The expression of viral genes, the replication of virus and the generation of progeny virions are influenced by m6A modifications in viral RNAs during virus infection. Meanwhile, the decorations of m6A in host mRNAs can make viral infections more likely to happen or can enhance the resistance of host to virus infection. However, the mechanism of m6A regulation in viral infection and host immune response has not been thoroughly elucidated to date. With the development of sequencing-based biotechnologies, transcriptome-wide mapping of m6A in viruses has been achieved, laying the foundation for expanding its functions and corresponding mechanisms. In this report, we summarize the positive and negative effects of m6A in distinct viral infection. Given the increasingly important roles of m6A in diverse viruses, m6A represents a novel potential target for antiviral therapy.

Keywords: immune; infection; m6A; viral life cycle; virus.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Related mechanisms and functions of m6A modification in mRNAs. The m6A modification is regulated by the “writers,” “erasers,” “readers” and “anti-readers.” Writers are composed of METTL3, METTL14, WTAP, KIAA1429, ZC3H13, RBM15, and METTL16, which have been reported to induce m6A RNA methylation. Erasers are m6A demethylases including FTO and ALKBH5. Readers are proteins that bind to m6A modified mRNAs and play corresponding roles. Those proteins that have been identified as readers to date include YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, eIF3, IGF2BP1, IGF2BP2, IGF2BP3, FMRP, and hnRNPA2/B1. The functions of m6A are related to almost all stages in deciding the fate of mRNAs including pre-mRNA splicing, pri-miRNA processing, mRNA export, mRNA stability, translation modulation and mRNA degradation. Anti-readers are proteins that preferentially bind to mRNAs in the absence of m6A, such as G3BP1/2, CAPRIN1, USP10, and RBM42.

Similar articles

Cited by

References

    1. Adams J. M., Cory S. (1975). Modified nucleosides and bizarre 5’-termini in mouse myeloma mRNA. Nature 255 28–33. - PubMed
    1. Alarcon C. R., Goodarzi H., Lee H., Liu X., Tavazoie S., Tavazoie S. F. (2015a). HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162 1299–1308. 10.1016/j.cell.2015.08.011 - DOI - PMC - PubMed
    1. Alarcon C. R., Lee H., Goodarzi H., Halberg N., Tavazoie S. F. (2015b). N6-methyladenosine marks primary microRNAs for processing. Nature 519 482–485. 10.1038/nature14281 - DOI - PMC - PubMed
    1. Ao Z., Zhu R., Tan X., Liu L., Chen L., Liu S., et al. (2016). Activation of HIV-1 expression in latently infected CD4+ T cells by the small molecule PKC412. Virol. J. 13:177. 10.1186/s12985-016-0637-9 - DOI - PMC - PubMed
    1. Arguello A. E., DeLiberto A. N., Kleiner R. E. (2017). RNA chemical proteomics reveals the N(6)-methyladenosine (m(6)A)-regulated protein-RNA interactome. J. Am. Chem. Soc. 139 17249–17252. 10.1021/jacs.7b09213 - DOI - PubMed

LinkOut - more resources