Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 10;141(14):6054-6059.
doi: 10.1021/jacs.9b01819. Epub 2019 Mar 29.

Stereoselective Synthesis of Molecular Square and Granny Knots

Affiliations

Stereoselective Synthesis of Molecular Square and Granny Knots

David A Leigh et al. J Am Chem Soc. .

Abstract

We report on the stereoselective synthesis of both molecular granny and square knots through the use of lanthanide-complexed overhand knots of specific handedness as three-crossing "entanglement synthons". The composite knots are assembled by combining two entanglement synthons (of the same chirality for a granny knot; of opposite handedness for a square knot) in three synthetic steps: first, a CuAAC reaction joins together one end of each overhand knot. Ring-closing olefin metathesis (RCM) then affords the closed-loop knot, locking the topology. This allows the lanthanide ions necessary for stabilizing the entangled conformation of the synthons to subsequently be removed. The composite knots were characterized by 1H and 13C NMR spectroscopy and mass spectrometry and the chirality of the knot stereoisomers compared by circular dichroism. The synthetic strategy of combining building blocks of defined stereochemistry (here overhand knots of Λ- or Δ-handed entanglement) is reminiscent of the chiron approach of using minimalist chiral synthons in the stereoselective synthesis of molecules with multiple asymmetric centers.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Parallels in the structural relationship between asymmetric centers in chiral molecules and strand crossings in knots. (a) Stereochemical consequences of combining two one-asymmetric-center synthons. (b) Topological consequences of combining two three-crossing entanglement synthons.
Figure 2
Figure 2
Lanthanide coordination induces folding and threading of L1/L2 to form entanglement synthons: alkene and alkyne- or azide-bearing overhand knots of single handedness (Λ or Δ). Reagents and conditions: (i) Lu(CF3SO3)3, MeCN, 80 °C, 16 h. Yields: 81% (Λ-L1•[Lu]), 82% (Δ-L1•[Lu]), 85% (Λ-L2•[Lu]), and 73% (Δ-L2•[Lu]).
Scheme 1
Scheme 1. Synthesis of Double Overhand Knot (Λ,Δ)-L3•[Lu]2 and Square Knot (Λ,Δ)-1
Reagents and conditions: (i) Cu(MeCN)4(CF3SO3), Tentagel-TBTA, MeCN/MeOH 1:1, RT, 16 h, 70%. (ii) Hoveyda-Grubbs second generation catalyst, MeNO2/CH2Cl2 1:1, 30%. (iii) Et4NF, MeCN, RT, 5 min, 95%.
Figure 3
Figure 3
(a) ESI-MS (positive mode) of square knot complex (Λ,Δ)-1•[Lu]2 (inset: isotopic distribution from HR-MS). (b) Partial 1H NMR spectra (600 MHz, MeCN-d3, 298 K) of (i) entanglement synthon Δ-L2•[Lu], (ii) entanglement synthon Λ-L1•[Lu], (iii) double overhand knot (Λ,Δ)-L3•[Lu]2, and (iv) square knot coordination complex (Λ,Δ)-1•[Lu]2. For full assignments, see the Supporting Information.
Figure 4
Figure 4
(a) Synthesis and HR-MS of granny knot complex (Λ,Λ)-1•[Lu]2. Conditions: (i) Cu(MeCN)4(CF3SO3), Tentagel-TBTA, MeCN/MeOH 1:1, RT, 16 h, 79%. (ii) Hoveyda-Grubbs 2nd generation catalyst, MeNO2/CH2Cl2 1:1, 33%. (b) Synthesis and HR-MS of granny knot complex (Δ,Δ)-1•[Lu]2. Conditions: (iii) Cu(MeCN)4(CF3SO3), Tentagel-TBTA, MeCN/MeOH 1:1, RT, 16 h, 52%. (iv) Hoveyda-Grubbs 2nd Gen, MeNO2/CH2Cl2 1:1, 31%. For each of the ion isotopic distributions, the experimentally observed spectrum is shown above the theoretically calculated spectrum.
Figure 5
Figure 5
Circular dichroism spectra (1.0 × 10–4 M, MeCN, 298 K) of granny knots (Λ,Λ)-1•[Lu]2 (blue) and (Δ,Δ)-1•[Lu]2 (red) and square knot (Λ,Δ)-1•[Lu]2 (green). Normalized for absorbance.

Similar articles

Cited by

References

    1. Fielden S. D. P.; Leigh D. A.; Woltering S. L. Molecular knots. Angew. Chem., Int. Ed. 2017, 56, 11166–11194. 10.1002/anie.201702531. - DOI - PMC - PubMed
    2. For other reviews on molecular knots, see:

    3. Fenlon E. E. Open problems in chemical topology. Eur. J. Org. Chem. 2008, 2008, 5023–5035. 10.1002/ejoc.200800578. - DOI
    4. Beves J. E.; Blight B. A.; Campbell C. J.; Leigh D. A.; McBurney R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem., Int. Ed. 2011, 50, 9260–9327. 10.1002/anie.201007963. - DOI - PubMed
    5. Forgan R. S.; Sauvage J.-P.; Stoddart J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 2011, 111, 5434–5464. 10.1021/cr200034u. - DOI - PubMed
    6. Amabilino D. B.; Sauvage J.-P. The beauty of knots at the molecular level. Top. Curr. Chem. 2011, 323, 107–126. 10.1007/128_2011_292. - DOI - PubMed
    7. Ayme J.-F.; Beves J. E.; Campbell C. J.; Leigh D. A. Template synthesis of molecular knots. Chem. Soc. Rev. 2013, 42, 1700–1712. 10.1039/C2CS35229J. - DOI - PubMed
    8. Horner K. E.; Miller M. A.; Steed J. W.; Sutcliffe P. M. Knot theory in modern chemistry. Chem. Soc. Rev. 2016, 45, 6432–6448. 10.1039/C6CS00448B. - DOI - PubMed
    9. Sauvage J.-P. From chemical topology to molecular machines (Nobel lecture). Angew. Chem., Int. Ed. 2017, 56, 11080–11093. 10.1002/anie.201702992. - DOI - PubMed
    10. Pairault N.; Niemeyer J. Chiral mechanically interlocked molecules – Applications of rotaxanes, catenanes and molecular knots in stereoselective chemosensing and catalysis. Synlett 2018, 29, 689–698. 10.1055/s-0036-1591934. - DOI
    1. Dietrich-Buchecker C. O.; Sauvage J.-P. A synthetic molecular trefoil knot. Angew. Chem., Int. Ed. Engl. 1989, 28, 189–192. 10.1002/anie.198901891. - DOI
    2. Ashton P. R.; Matthews O. A.; Menzer S.; Raymo F. M.; Spencer N.; Stoddart J. F.; Williams D. J. A template-directed synthesis of a molecular trefoil knot. Liebigs Ann. Chem. 1997, 1997, 2485–2494. 10.1002/jlac.199719971210. - DOI
    3. Dietrich-Buchecker C. O.; Hwang N. G.; Sauvage J.-P. A trefoil knot coordinated to two lithium ions: synthesis and structure. New J. Chem. 1999, 23, 911–914. 10.1039/a904476k. - DOI
    4. Safarowsky O.; Nieger M.; Fröhlich R.; Vögtle F. A molecular knot with twelve amide groups—one-step synthesis, crystal structure, chirality. Angew. Chem., Int. Ed. 2000, 39, 1616–1618. 10.1002/(SICI)1521-3773(20000502)39:9<1616::AID-ANIE1616>3.0.CO;2-Y. - DOI - PubMed
    5. Feigel M.; Ladberg R.; Engels S.; Herbst-Irmer R.; Fröhlich R. A trefoil knot made of amino acids and steroids. Angew. Chem., Int. Ed. 2006, 45, 5698–5702. 10.1002/anie.200601111. - DOI - PubMed
    6. Guo J.; Mayers P. C.; Breault G. A.; Hunter C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat. Chem. 2010, 2, 218–220. 10.1038/nchem.544. - DOI - PubMed
    7. Barran P. E.; Cole H. L.; Goldup S. M.; Leigh D. A.; McGonigal P. R.; Symes M. D.; Wu J. Y.; Zengerle M. Active metal template synthesis of a molecular trefoil knot. Angew. Chem., Int. Ed. 2011, 50, 12280–12284. 10.1002/anie.201105012. - DOI - PubMed
    8. Ponnuswamy N.; Cougnon F. B. L.; Clough J. M.; Pantoş G. D.; Sanders J. K. M. Discovery of an organic trefoil knot. Science 2012, 338, 783–785. 10.1126/science.1227032. - DOI - PubMed
    9. Prakasam T.; Lusi M.; Elhabiri M.; Platas-Iglesias C.; Olsen J.-C.; Asfari Z.; Cianférani-Sanglier S.; Debaene F.; Charbonnière L. J.; Trabolsi A. Simultaneous self assembly of a [2]catenane, a trefoil knot, and a solomon link from a simple pair of ligands. Angew. Chem. 2013, 125, 10140–10144. 10.1002/ange.201302425. - DOI - PubMed
    10. Ayme J.-F.; Gil-Ramírez G.; Leigh D. A.; Lemonnier J.-F.; Markevicius A.; Muryn C. A.; Zhang G. Lanthanide template synthesis of a molecular trefoil knot. J. Am. Chem. Soc. 2014, 136, 13142–13145. 10.1021/ja506886p. - DOI - PubMed
    11. Prakasam T.; Bilbeisi R. A.; Lusi M.; Olsen J.-C.; Platas-Iglesias C.; Trabolsi A. Postsynthetic modification of cadmium-based knots and links. Chem. Commun. 2016, 52, 7398–7401. 10.1039/C6CC02423H. - DOI - PubMed
    12. Zhang L.; August D. P.; Zhong J.; Whitehead G. F. S.; Vitorica-Yrezabal I. J.; Leigh D. A. Molecular trefoil knot from a trimeric circular helicate. J. Am. Chem. Soc. 2018, 140, 4982–4985. 10.1021/jacs.8b00738. - DOI - PubMed
    13. Cougnon F. B. L.; Caprice K.; Pupier M.; Bauzá A.; Frontera A. A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc. 2018, 140, 12442–12450. 10.1021/jacs.8b05220. - DOI - PubMed
    1. Adams C. C.The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots; American Mathematical Society: Providence, RI, 2004.
    1. Ayme J.-F.; Beves J. E.; Leigh D. A.; McBurney R. T.; Rissanen K.; Schultz D. A synthetic molecular pentafoil knot. Nat. Chem. 2012, 4, 15–20. 10.1038/nchem.1193. - DOI - PubMed
    2. Ayme J.-F.; Beves J. E.; Leigh D. A.; McBurney R. T.; Rissanen K.; Schultz D. Pentameric circular iron(II) double helicates and a molecular pentafoil knot. J. Am. Chem. Soc. 2012, 134, 9488–9497. 10.1021/ja303355v. - DOI - PubMed
    3. Ponnuswamy N.; Cougnon F. B. L.; Pantoş G. D.; Sanders J. K. M. Homochiral and meso figure eight knots and a Solomon link. J. Am. Chem. Soc. 2014, 136, 8243–8251. 10.1021/ja4125884. - DOI - PubMed
    4. Marcos V.; Stephens A. J.; Jaramillo-Garcia J.; Nussbaumer A. L.; Woltering S. L.; Valero A.; Lemonnier J.-F.; Vitorica-Yrezabal I. J.; Leigh D. A. Allosteric initiation and regulation of catalysis with a molecular knot. Science 2016, 352, 1555–1559. 10.1126/science.aaf3673. - DOI - PubMed
    5. Danon J. J.; Krüger A.; Leigh D. A.; Lemonnier J.-F.; Stephens A. J.; Vitorica-Yrezabal I. J.; Woltering S. L. Braiding a molecular knot with eight crossings. Science 2017, 355, 159–162. 10.1126/science.aal1619. - DOI - PubMed
    6. Cougnon F. B. L. Tight embrace in a molecular knot with eight crossings. Angew. Chem., Int. Ed. 2017, 56, 4918–4919. 10.1002/anie.201701308. - DOI - PubMed
    7. Kim D. H.; Singh N.; Oh J.; Kim E.-H.; Jung J.; Kim H.; Chi K.-W. Coordination-driven self-assembly of a molecular knot comprising sixteen crossings. Angew. Chem., Int. Ed. 2018, 57, 5669–5673. 10.1002/anie.201800638. - DOI - PubMed
    8. Leigh D. A.; Lemonnier J.-F.; Woltering S. L. Comment on “Coordination-driven self-assembly of a molecular knot comprising sixteen crossings. Angew. Chem., Int. Ed. 2018, 57, 12212–12214. 10.1002/anie.201804904. - DOI - PubMed
    9. Zhang L.; Lemonnier J.-F.; Acocella A.; Calvaresi M.; Zerbetto F.; Leigh D. A. Effects of knot tightness at the molecular level. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 2452.10.1073/pnas.1815570116. - DOI - PMC - PubMed
    1. Carina R. F.; Dietrich-Buchecker C. O.; Sauvage J.-P. Molecular composite knots. J. Am. Chem. Soc. 1996, 118, 9110–9116. 10.1021/ja961459p. - DOI
    2. Danon J. J.; Leigh D. A.; Pisano S.; Valero A.; Vitorica-Yrezabal I. J. A Six-Crossing Doubly Interlocked [2]Catenane with Twisted Rings, and a Molecular Granny Knot. Angew. Chem., Int. Ed. 2018, 57, 13833–13837. 10.1002/anie.201807135. - DOI - PMC - PubMed
    3. Zhang L.; Stephens A. J.; Nussbaumer A. L.; Lemonnier J.-F.; Jurček P.; Vitorica-Yrezabal I. J.; Leigh D. A. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 2018, 10, 1083–1088. 10.1038/s41557-018-0124-6. - DOI - PubMed

Publication types