Optimization of hydroxylation of tyrosine and tyrosine-containing peptides by mushroom tyrosinase
- PMID: 3089286
- DOI: 10.1016/0167-4838(86)90152-4
Optimization of hydroxylation of tyrosine and tyrosine-containing peptides by mushroom tyrosinase
Abstract
Free tyrosine and tyrosine residues in various peptides and proteins are converted into dopa and dopa residues by tyrosinase (monophenol,L-dopa:oxygen oxidoreductase, EC 1.14.18.1) in the presence of reductants. The efficiency of the tyrosine-to-dopa conversion was examined under varied conditions, such as the substrate-to-tyrosine ratio, concentrations of reductant and oxygen in the reaction solution, pH, temperature and reaction time. The highest dopa yields were achieved with the following optimal conditions for hydroxylation: 0.1 M phosphate buffer at pH 7, 25 mM ascorbic acid, 1 mM tyrosine, 50 micrograms/ml tyrosinase and 20 degrees C. Using these conditions, up to 70% of free tyrosine was converted into dopa, and tyrosine residues in several synthetic peptides were also hydroxylated to dopa residues at ratios as high as free tyrosine. The preparation of hydroxylated analogues of the decapeptide (Ala-Lys-Pro-Ser-Tyr-Pro-Pro-Thr-Tyr-Lys), in particular, may contribute to a better understanding of adhesion in the dopa-containing mussel glue protein.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
