Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 19;26(12):3336-3346.e4.
doi: 10.1016/j.celrep.2019.02.082.

Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan

Affiliations
Free article

Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan

Faxiang Li et al. Cell Rep. .
Free article

Abstract

The DNA-dependent metalloprotease Spartan (SPRTN) cleaves DNA-protein crosslinks (DPCs) and protects cells from DPC-induced genome instability. Germline mutations of SPRTN are linked to human Ruijs-Aalfs syndrome (RJALS) characterized by progeria and early-onset hepatocellular carcinoma. The mechanism of DNA-mediated activation of SPRTN is not understood. Here, we report the crystal structure of the human SPRTN SprT domain bound to single-stranded DNA (ssDNA). Our structure reveals a Zn2+-binding sub-domain (ZBD) in SprT that shields its active site located in the metalloprotease sub-domain (MPD). The narrow catalytic groove between MPD and ZBD only permits cleavage of flexible substrates. The ZBD contains an ssDNA-binding site, with a DNA-base-binding pocket formed by aromatic residues. Mutations of ssDNA-binding residues diminish the protease activity of SPRTN. We propose that the ZBD contributes to the ssDNA specificity of SPRTN, restricts the access of globular substrates, and positions DPCs, which may need to be partially unfolded, for optimal cleavage.

Keywords: DNA repair; DNA-protein crosslinks; RJALS; Spartan; Zn(2+) binding; genome instability; metalloprotease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources