Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 13;13(1):30.
doi: 10.1186/s12918-019-0706-y.

How to schedule VEGF and PD-1 inhibitors in combination cancer therapy?

Affiliations

How to schedule VEGF and PD-1 inhibitors in combination cancer therapy?

Xiulan Lai et al. BMC Syst Biol. .

Abstract

Background: One of the questions in the design of cancer clinical trials with combination of two drugs is in which order to administer the drugs. This is an important question, especially in the case where one agent may interfere with the effectiveness of the other agent.

Results: In the present paper we develop a mathematical model to address this scheduling question in a specific case where one of the drugs is anti-VEGF, which is known to affect the perfusion of other drugs. As a second drug we take anti-PD-1. Both drugs are known to increase the activation of anticancer T cells. Our simulations show that in the case where anti-VEGF reduces the perfusion, a non-overlapping schedule is significantly more effective than a simultaneous injection of the two drugs, and it is somewhat more beneficial to inject anti-PD-1 first.

Conclusion: The method and results of the paper can be extended to other combinations, and they could play an important role in the design of clinical trials with combination therapy, where scheduling strategies may significantly affect the outcome.

Keywords: Anti-PD-1; Anti-VEGF; Combination therapy; PDE model; Scheduling.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Interaction of immune cells with cancer cells. Sharp arrows indicate proliferation/activation, blocked arrows indicate killing/blocking, and the inverted arrow indicates recruitment/chemoattraction. C: cancer cells, D: dentritic cells, T1: CD 4+ Th1 cells, T8: CD 8+ T cells, Treg: T regulatory cells, Endo: endothelial cells, Ox: Oxygen from the blood. T1 and T8 cells and Tregs express PD-1 and PD-L1; tumor expresses PD-L1
Fig. 2
Fig. 2
Distribution of cells in space
Fig. 3
Fig. 3
Average densities/concentrations, in g/cm3, of all the variables in the model with control case (no drugs). All parameter values are the same as in Tables 3 and 4, for a mouse model
Fig. 4
Fig. 4
Growth of tumor volume under treatment with γB or γA, or combination (γB,γA). The anti-VEGF or/and the anti-PD-1 treatment started at day 0 and continued for 10 days. a γB=3×10−8g/cm3·day,γA=3×10−8g/cm3·day; b γB=3.5×10−8g/cm3·day,γA=0.5×10−8g/cm3·day. All other parameters are same as in Fig. 3
Fig. 5
Fig. 5
Anti-VEGF decreases PD-1 expression on CD 8+ T cells. The treatment with anti-PD-1 drug started at day 0 and continued for 30 days with γB=2×10−8g/cm3·day (a) Growth of tumor volume. (b) Expression level of PD-1 on CD 8+ T cells
Fig. 6
Fig. 6
Tumor volume under schedules S1, S2 and S3 for 4 pairs (γB,γA). Here γB1=9.5×10−9g/cm3·day,γA1=1.2×10−10g/cm3·day,γB2=10×10−9g/cm3·day,γA2=1.5×10−10g/cm3·day.a Tumor volume under schedule S1; b Tumor volume under schedule S2; c Tumor volume under schedule S3
Fig. 7
Fig. 7
Spatial profiles of the densities of dendritic cells, T cells, endothelial cells and cancer cells with γA=1.2×10−10g/cm3·day,γB=9.5×10−9g/cm3·day. a Profiles under schedule S2 at day t=0,8,15 and 16 weeks. b Profiles under schedule S3 at days t=0,8,18 and 19 weeks
Fig. 8
Fig. 8
Efficacy maps: The time in weeks (Tcrit) at which the tumor volume decreases by 95% from its initial size under treatment with (γB,γA). a Efficacy map under schedule S1; b Efficacy map under schedule S2; c Efficacy map under schedule S3. The color columns show the time at which the tumor volume was reduced by 95%
Fig. 9
Fig. 9
Tumor volume under the schedules S1, S2 and S3 for 4 pairs (γB,γA). Here γB1=9.5×10−9g/cm3·day,γA1=1.2×10−10g/cm3·day,γB2=9.5×10−9g/cm3·day,γA2=1.5×10−10g/cm3·day. a Tumor volume under schedule S1; b Tumor volume under schedule S2; c Tumor volume under schedule S3
Fig. 10
Fig. 10
Statistically significant PRCC values (p-value <0.01) for tumor volume at day 30

Similar articles

Cited by

References

    1. Meadows KL, Hurwitz HI. Anti-vegf therapies in the clinic. Cold Spring Harb Perspect Med. 2012;2(10):006577. - PMC - PubMed
    1. Nerini IF, Cesca M, Bizzaro F, Giavazzi R. Combination therapy in cancer: effects of angiogenesis inhibitors on drug pharmacokinetics and pharmacodynamics. Chin J Cancer. 2016;35(1):61. - PMC - PubMed
    1. Turley RS, Fontanella AN, Padussis JC, Toshimitsu H, Tokuhisa Y, Cho EH, Hanna G, Beasley GM, Augustine CK, Dewhirst MW, et al. Bevacizumab-induced alterations in vascular permeability and drug delivery: a novel approach to augment regional chemotherapy for in-transit melanoma. Clin Cancer Res. 2012;18(12):3328–39. - PMC - PubMed
    1. Pastuskovas CV, Mundo EE, Williams SP, Nayak TK, Ho J, Ulufatu S, Clark S, Ross S, Cheng E, Parsons-Reponte K, et al. Effects of anti-vegf on pharmacokinetics, biodistribution, and tumor penetration of trastuzumab in a preclinical breast cancer model. Mol Cancer Ther. 2012;11(3):752–62. - PubMed
    1. Daldrup-Link HE, Okuhata Y, Wolfe A, Srivastav S, Øie S, Ferrara N, Cohen RL, Shames DM, Brasch RC. Decrease in tumor apparent permeability-surface area product to a mri macromolecular contrast medium following angiogenesis inhibition with correlations to cytotoxic drug accumulation. Microcirculation. 2004;11(5):387–96. - PubMed

Publication types

MeSH terms

Substances