RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA
- PMID: 30894694
- DOI: 10.1038/s41596-019-0139-5
RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA
Abstract
Blood-based diagnostics tests, using individual or panels of biomarkers, may revolutionize disease diagnostics and enable minimally invasive therapy monitoring. However, selection of the most relevant biomarkers from liquid biosources remains an immense challenge. We recently presented the thromboSeq pipeline, which enables RNA sequencing and cancer classification via self-learning and swarm intelligence-enhanced bioinformatics algorithms using blood platelet RNA. Here, we provide the wet-lab protocol for the generation of platelet RNA-sequencing libraries and the dry-lab protocol for the development of swarm intelligence-enhanced machine-learning-based classification algorithms. The wet-lab protocol includes platelet RNA isolation, mRNA amplification, and preparation for next-generation sequencing. The dry-lab protocol describes the automated FASTQ file pre-processing to quantified gene counts, quality controls, data normalization and correction, and swarm intelligence-enhanced support vector machine (SVM) algorithm development. This protocol enables platelet RNA profiling from 500 pg of platelet RNA and allows automated and optimized biomarker panel selection. The wet-lab protocol can be performed in 5 d before sequencing, and the algorithm development can be completed in 2 d, depending on computational resources. The protocol requires basic molecular biology skills and a basic understanding of Linux and R. In all, with this protocol, we aim to enable the scientific community to test platelet RNA for diagnostic algorithm development.
References
-
- Alix-Panabières, C. & Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6, 479–491 (2016). - DOI
-
- Chan, K. C. A. et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. USA 110, 18761–18768 (2013). - DOI
-
- Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017). - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources