Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 23;7(5):2165-2173.
doi: 10.1039/c8bm01603h.

Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension

Affiliations

Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension

Yilin Chen et al. Biomater Sci. .

Abstract

Neurodegenerative diseases and acute nerve injuries are becoming global clinical problems. Engineering three-dimensional (3D), anisotropic neural cellular structures in vitro is therefore desirable in the regenerative medicine research community. Here, we present, for the first time, a single-step, facile but delicate, fabrication of a 3D macroporous microfibrous scaffold with both anisotropic nanogrooved topography and in situ functionalization with a mussel inspired bioadhesive, poly(norepinephrine) (pNE). Specifically, immiscible blends of polycaprolactone (PCL) and polyethylene oxide (PEO) were electrospun into a grounded coagulation bath containing the precursor of pNE. Upon jet entrance in the bath, both phase-separation-driven longitudinal nanotopography and in situ pNE surface functionalization were introduced on individual microfibers that were packed into a 3D macroporous structure. The resulting scaffold significantly promoted 3D neurite extension capacity, 8-fold higher neurite extension over the isotropic counterpart, demonstrating that such a scaffold has great promise in 3D neural cell culture for nerve tissue modelling and engineering.

PubMed Disclaimer

LinkOut - more resources