Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2019 Mar 21;16(3):e1002766.
doi: 10.1371/journal.pmed.1002766. eCollection 2019 Mar.

Independent and combined effects of improved water, sanitation, and hygiene (WASH) and improved complementary feeding on early neurodevelopment among children born to HIV-negative mothers in rural Zimbabwe: Substudy of a cluster-randomized trial

Affiliations
Randomized Controlled Trial

Independent and combined effects of improved water, sanitation, and hygiene (WASH) and improved complementary feeding on early neurodevelopment among children born to HIV-negative mothers in rural Zimbabwe: Substudy of a cluster-randomized trial

Melissa J Gladstone et al. PLoS Med. .

Abstract

Background: Globally, nearly 250 million children (43% of all children under 5 years of age) are at risk of compromised neurodevelopment due to poverty, stunting, and lack of stimulation. We tested the independent and combined effects of improved water, sanitation, and hygiene (WASH) and improved infant and young child feeding (IYCF) on early child development (ECD) among children enrolled in the Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial in rural Zimbabwe.

Methods and findings: SHINE was a cluster-randomized community-based 2×2 factorial trial. A total of 5,280 pregnant women were enrolled from 211 clusters (defined as the catchment area of 1-4 village health workers [VHWs] employed by the Zimbabwean Ministry of Health and Child Care). Clusters were randomly allocated to standard of care, IYCF (20 g of small-quantity lipid-based nutrient supplement per day from age 6 to 18 months plus complementary feeding counseling), WASH (ventilated improved pit latrine, handwashing stations, chlorine, liquid soap, and play yard), and WASH + IYCF. Primary outcomes were child length-for-age Z-score and hemoglobin concentration at 18 months of age. Children who completed the 18-month visit and turned 2 years (102-112 weeks) between March 1, 2016, and April 30, 2017, were eligible for the ECD substudy. We prespecified that primary inferences would be drawn from findings of children born to HIV-negative mothers; these results are presented in this paper. A total of 1,655 HIV-unexposed children (64% of those eligible) were recruited into the ECD substudy from 206 clusters and evaluated for ECD at 2 years of age using the Malawi Developmental Assessment Tool (MDAT) to assess gross motor, fine motor, language, and social skills; the MacArthur-Bates Communicative Development Inventories (CDI) to assess vocabulary and grammar; the A-not-B test to assess object permanence; and a self-control task. Outcomes were analyzed in the intention-to-treat population. For all ECD outcomes, there was not a statistical interaction between the IYCF and WASH interventions, so we estimated the effects of the interventions by comparing the 2 IYCF groups with the 2 non-IYCF groups and the 2 WASH groups with the 2 non-WASH groups. The mean (95% CI) total MDAT score was modestly higher in the IYCF groups compared to the non-IYCF groups in unadjusted analysis: 1.35 (0.24, 2.46; p = 0.017); this difference did not persist in adjusted analysis: 0.79 (-0.22, 1.68; p = 0.057). There was no evidence of impact of the IYCF intervention on the CDI, A-not-B, or self-control tests. Among children in the WASH groups compared to those in the non-WASH groups, mean scores were not different for the MDAT, A-not-B, or self-control tests; mean CDI score was not different in unadjusted analysis (0.99 [95% CI -1.18, 3.17]) but was higher in children in the WASH groups in adjusted analysis (1.81 [0.01, 3.61]). The main limitation of the study was the specific time window for substudy recruitment, meaning not all children from the main trial were enrolled.

Conclusions: We found little evidence that the IYCF and WASH interventions implemented in SHINE caused clinically important improvements in child development at 2 years of age. Interventions that directly target neurodevelopment (e.g., early stimulation) or that more comprehensively address the multifactorial nature of neurodevelopment may be required to support healthy development of vulnerable children.

Trial registration: ClinicalTrials.gov NCT01824940.

PubMed Disclaimer

Conflict of interest statement

The authors have declared no competing interests exist.

Figures

Fig 1
Fig 1. Flow of participants through the SHINE early child development (ECD) substudy.
1In all, 212 clusters were randomized, 53 in each of the 4 trial arms. After randomization, 1 cluster was excluded as it was determined to be in an urban area, 1 cluster was excluded as the village health worker covering it mainly had clients outside the study area, and 1 more was merged into a neighboring cluster based on subsequent data on village health worker coverage. Three new cluster designations were created due to anomalies in the original mapping: for 2 of these, the trial arm was clear; the third contained areas that were in 2 trial arms, and was assigned to the underrepresented arm, resulting in 53 clusters in each arm. All of this occurred before enrollment began. When enrollment was completed, however, there was 1 standard-of-care cluster in which no women were enrolled, leaving a total of 211 clusters available for analysis. 2SOC, standard of care; IYCF, infant and young child feeding; WASH; water, sanitation, and hygiene.3Children were not eligible for the ECD substudy if they turned 2 years of age (allowable range 102–112 weeks) before March 1, 2016.4Children were eligible for the ECD substudy if they turned 2 years of age (allowable range 102–112 weeks) between March 1, 2016, and April 30, 2017.5Children were eligible for the ECD substudy because they turned 2 years of age (allowable range 102–112 weeks) between March 1, 2016, and April 30, 2017, but they were not contactable or were not approached for consent because the number of children becoming 102–112 weeks of age between March 1, 2016, and April 30, 2017, exceeded the capacity of the 11 ECD-trained nurses.

Similar articles

Cited by

References

    1. Lu C, Black MM, Richter LM. Risk of poor development in young children in low-income and middle-income countries: an estimation and analysis at the global, regional, and country level. Lancet Glob Health. 2016;4(12):e916–22. 10.1016/S2214-109X(16)30266-2 - DOI - PMC - PubMed
    1. Black MM, Walker SP, Fernald LCH, Andersen CT, DiGirolamo AM, Lu C, et al. Advancing early childhood development: from science to scale 1: early childhood development coming of age: science through the life course. Lancet. 2017;389(10064):77–90. 10.1016/S0140-6736(16)31389-7 - DOI - PMC - PubMed
    1. United Nations Children’s Fund. Malnutrition. New York: United Nations Children’s Fund; 2018 [cited 2018 Oct 11]. Available from: https://data.unicef.org/topic/nutrition/malnutrition/.
    1. World Health Organization, United Nations Children’s Fund, World Bank Group. Levels and trends in child malnutrition: UNICEF/WHO/World Bank Group joint child malnutrition estimates—key findings of the 2018 edition. Geneva: World Health Organization; 2018.
    1. Grantham-McGregor SM, Fernald LC, Kagawa RM, Walker S. Effects of integrated child development and nutrition interventions on child development and nutritional status. Ann N Y Acad Sci. 2014;1308:11–32. 10.1111/nyas.12284 - DOI - PubMed

Publication types

MeSH terms

Associated data