Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 22;59(4):1357-1365.
doi: 10.1021/acs.jcim.8b00657. Epub 2019 Apr 2.

Machine Learning Prediction of H Adsorption Energies on Ag Alloys

Machine Learning Prediction of H Adsorption Energies on Ag Alloys

Robert A Hoyt et al. J Chem Inf Model. .

Abstract

Adsorption energies on surfaces are excellent descriptors of their chemical properties, including their catalytic performance. High-throughput adsorption energy predictions can therefore help accelerate first-principles catalyst design. To this end, we present over 5000 DFT calculations of H adsorption energies on dilute Ag alloys and describe a general machine learning approach to rapidly predict H adsorption energies for new Ag alloy structures. We find that random forests provide accurate predictions and that the best features are combinations of traditional chemical and structural descriptors. Further analysis of our model errors and the underlying forest kernel reveals unexpected finite-size electronic structure effects: embedded dopant atoms can display counterintuitive behavior such as nonmonotonic trends as a function of composition and high sensitivity to dopants far from the adsorbing H atom. We explain these behaviors with simple tight-binding Hamiltonians and d-orbital densities of states. We also use variations among forest leaves to predict the uncertainty of predictions, which allows us to mitigate the effects of larger errors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources