Characterization of cell fate probabilities in single-cell data with Palantir
- PMID: 30899105
- PMCID: PMC7549125
- DOI: 10.1038/s41587-019-0068-4
Characterization of cell fate probabilities in single-cell data with Palantir
Erratum in
-
Author Correction: Characterization of cell fate probabilities in single-cell data with Palantir.Nat Biotechnol. 2019 Oct;37(10):1237. doi: 10.1038/s41587-019-0282-0. Nat Biotechnol. 2019. PMID: 31534198
Abstract
Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir's resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.
Figures





Similar articles
-
Comprehensive analysis of single-cell RNA sequencing data from healthy human marrow hematopoietic cells.BMC Res Notes. 2020 Nov 10;13(1):514. doi: 10.1186/s13104-020-05357-y. BMC Res Notes. 2020. PMID: 33168060 Free PMC article.
-
CellRank for directed single-cell fate mapping.Nat Methods. 2022 Feb;19(2):159-170. doi: 10.1038/s41592-021-01346-6. Epub 2022 Jan 13. Nat Methods. 2022. PMID: 35027767 Free PMC article.
-
Inferring population dynamics from single-cell RNA-sequencing time series data.Nat Biotechnol. 2019 Apr;37(4):461-468. doi: 10.1038/s41587-019-0088-0. Epub 2019 Apr 1. Nat Biotechnol. 2019. PMID: 30936567 Free PMC article.
-
Constructing cell lineages from single-cell transcriptomes.Mol Aspects Med. 2018 Feb;59:95-113. doi: 10.1016/j.mam.2017.10.004. Epub 2017 Nov 26. Mol Aspects Med. 2018. PMID: 29107741 Review.
-
Stem cell regulatory niches and their role in normal and malignant hematopoiesis.Curr Opin Hematol. 2010 Jul;17(4):281-6. doi: 10.1097/MOH.0b013e32833a25d8. Curr Opin Hematol. 2010. PMID: 20473160 Review.
Cited by
-
Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells.Nat Commun. 2020 Aug 31;11(1):4367. doi: 10.1038/s41467-020-18155-8. Nat Commun. 2020. PMID: 32868763 Free PMC article.
-
OmicVerse: a framework for bridging and deepening insights across bulk and single-cell sequencing.Nat Commun. 2024 Jul 16;15(1):5983. doi: 10.1038/s41467-024-50194-3. Nat Commun. 2024. PMID: 39013860 Free PMC article.
-
Pan-cancer profiling of tumor-infiltrating natural killer cells through transcriptional reference mapping.Nat Immunol. 2024 Aug;25(8):1445-1459. doi: 10.1038/s41590-024-01884-z. Epub 2024 Jul 2. Nat Immunol. 2024. PMID: 38956379 Free PMC article.
-
BLTSA: pseudotime prediction for single cells by branched local tangent space alignment.Bioinformatics. 2023 Feb 3;39(2):btad054. doi: 10.1093/bioinformatics/btad054. Bioinformatics. 2023. PMID: 36692140 Free PMC article.
-
Dissecting chicken germ cell dynamics by combining a germ cell tracing transgenic chicken model with single-cell RNA sequencing.Comput Struct Biotechnol J. 2022 Apr 2;20:1654-1669. doi: 10.1016/j.csbj.2022.03.040. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 35465157 Free PMC article.
References
-
- Haghverdi L, Buttner M, Wolf FA, Buettner F & Theis FJ Diffusion pseudotime robustly reconstructs lineage branching. Nature methods 13, 845–848 (2016). - PubMed
Online Methods References
-
- Buettner F et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature biotechnology 33, 155–160 (2015). - PubMed
-
- van der Maaten LPJ & Hinton GE Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Researc 9, 2579–2605 (2008).
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources