Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 7:13:77.
doi: 10.3389/fncel.2019.00077. eCollection 2019.

Alterations in GABAA-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders

Affiliations

Alterations in GABAA-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders

Miranda Mele et al. Front Cell Neurosci. .

Abstract

GABAA receptors (GABAAR) are the major players in fast inhibitory neurotransmission in the central nervous system (CNS). Regulation of GABAAR trafficking and the control of their surface expression play important roles in the modulation of the strength of synaptic inhibition. Different pieces of evidence show that alterations in the surface distribution of GABAAR and dysregulation of their turnover impair the activity of inhibitory synapses. A diminished efficacy of inhibitory neurotransmission affects the excitatory/inhibitory balance and is a common feature of various disorders of the CNS characterized by an increased excitability of neuronal networks. The synaptic pool of GABAAR is mainly controlled through regulation of internalization, recycling and lateral diffusion of the receptors. Under physiological condition these mechanisms are finely coordinated to define the strength of GABAergic synapses. In this review article, we focus on the alteration in GABAAR trafficking with an impact on the function of inhibitory synapses in various disorders of the CNS. In particular we discuss how similar molecular mechanisms affecting the synaptic distribution of GABAAR and consequently the excitatory/inhibitory balance may be associated with a wide diversity of pathologies of the CNS, from psychiatric disorders to acute alterations leading to neuronal death. A better understanding of the cellular and molecular mechanisms that contribute to the impairment of GABAergic neurotransmission in these disorders, in particular the alterations in GABAAR trafficking and surface distribution, may lead to the identification of new pharmacological targets and to the development of novel therapeutic strategies.

Keywords: Alzheimer’s disease; GABAA receptor trafficking; Huntington’s disease; Parkinson’s disease; brain ischemia; epilepsy.

PubMed Disclaimer

Figures

Figure 1
Figure 1
GABAA receptor (GABAAR) trafficking under physiologic condition. (1) GABAAR are assembled in the ER. (2) In the ER, unassembled receptor subunits are subjected to poly-ubiquitination and targeted for proteasomal degradation. (3) GABAAR transport to the Golgi is a process negatively regulated by Plic-1. Inside the Golgi, GABAAR bind to GABAAR associated protein (GABARAP)/N-ethylmaleimide-sensitive factor (NSF) complex that facilitates their transport to the plasma membrane. The delivery of GABAAR to the plasma membrane is also regulated by GODZ, Big2, glutamate receptor-interacting protein (GRIP) and PRIP. (4) At the plasma membrane, GABAAR quickly exchange between synaptic and extrasynaptic locations, and the accumulation of the receptor at the inhibitory synapses is regulated by its scaffold protein gephyrin. (5) The phosphorylation of β3 or γ2 GABAAR subunits on their intracellular loop negatively regulates GABAAR internalization. (6) The process of GABAAR endocytosis is AP2/clathrin/dynamin-mediated. (7) Most internalized GABAAR are rapidly recycled back to the plasma membrane by a mechanism dependent of the interaction with huntingtin-associated protein 1 (HAP1). (8) The non-recycled GABAAR are targeted for lysosomal degradation.
Figure 2
Figure 2
Alterations of GABAAR trafficking in brain disorders. Deficits in GABAAR trafficking have been reported in different pathological conditions in the central nervous system (CNS). (1) Reduced synaptic clustering of GABAAR has been observed in epilepsy, ischemia, autism spectrum disorders (ASDs) and Alzheimer’s disease (AD). (2) Increased dephosphorylation of GABAAR β3 subunit on serine residues 408/9 (Ser408/409) has been reported in epilepsy, ischemic condition and ASD. (3) An increase in AP2/clathrin/dynamin-mediated endocytosis of GABAAR occurs in epileptic conditions, ischemia, ASD and AD. (4) Impairment in GABAAR recycling has been shown in ischemic conditions and in Huntington’s disease (HD). (5) Enhanced lysosomal degradation of GABAAR due to ubiquitination was detected after an ischemic insult.

Similar articles

Cited by

References

    1. Ali Rodriguez R., Joya C., Hines R. M. (2018). Common ribs of inhibitory synaptic dysfunction in the umbrella of neurodevelopmental disorders. Front. Mol. Neurosci. 11:132. 10.3389/fnmol.2018.00132 - DOI - PMC - PubMed
    1. Amantea D., Bagetta G. (2017). Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Curr. Opin. Pharmacol. 35, 111–119. 10.1016/j.coph.2017.07.014 - DOI - PubMed
    1. Arancibia-Cárcamo I. L., Yuen E. Y., Muir J., Lumb M. J., Michels G., Saliba R. S., et al. . (2009). Ubiquitin-dependent lysosomal targeting of GABAA receptors regulates neuronal inhibition. Proc. Natl. Acad. Sci. U S A 106, 17552–17557. 10.1073/pnas.0905502106 - DOI - PMC - PubMed
    1. Baio J., Wiggins L., Christensen D. L., Maenner M. J., Daniels J., Warren Z., et al. . (2018). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, united states, 2014. MMWR Surveill. Summ. 67, 1–23. 10.15585/mmwr.ss6706a1 - DOI - PMC - PubMed
    1. Balasubramanian S., Teissére J. A., Raju D. V., Hall R. A. (2004). Hetero-oligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. J. Biol. Chem. 279, 18840–18850. 10.1074/jbc.M313470200 - DOI - PubMed

LinkOut - more resources