Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Aug:281:339-58.
doi: 10.1113/jphysiol.1978.sp012426.

Reprimed charge movement in skeletal muscle fibres

Reprimed charge movement in skeletal muscle fibres

R F Rakowski. J Physiol. 1978 Aug.

Abstract

1. The three intracellular micro-electrode voltage-clamp technique was used to study the recovery of membrane charge movement in semitendinosus muscles of Rana pipiens. Muscles were placed in a hypertonic depolarizing solution to inactivate voltage dependent charge movement. Tetrodotoxin and tetraethylammonium ions (TEA+) were present to block voltage dependent ionic conductances. Rb+ and SO4(2-) were present to reduce inward rectification and leakage conductance. 2. The recovery ('repriming') of membrane charge movement was studied following hyperpolarizing pulses from a holding potential of -20 mV to membrane potentials from -30 to -140 mV for durations of 2--100 sec. The reprimed charge movement measured as the difference in membrane current required for identical voltage steps before and after long duration hyperpolarizing pulses was a linear function of membrane potential and symmetrical in shape. Reprimed charge is, therefore, simply the result of an increase in the linear capacitance of the fibre. 3. The mean value of the percent increase in capacitance for repriming at -100 mV was 12.3 +/- 1.7% (S.E. of mean) for 25 sec duration pulses and 27.8 +/- 2.9% for 100 sec duration pulses. If these data are corrected to the steady state and the surface contribution subtracted, the mean increase in 'volume' capacity is 40.3 +/- 3.6% (n = 21) for fibres with a mean diameter of 51 +/- 4 micron. 4. The increase in capacity can arise either by an increase in the transverse tubular length constant (lambdaT) or by gaining electrical access to additional linear capacitance within the fibre volume. If the capacitance arises solely from the transverse tubular system, the value of lambdaT before repriming can be no larger than 20 micron in order to explain the observed increase in volume capacity. A value of lambdaT as small as this seems unlikely. 5. The observation that reprimed charge is simply the result of an increase in linear capacitance is not consistent with the hypothesis that it is a gating mechanism for the activation of contraction.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1978 May;278:533-57 - PubMed
    1. J Physiol. 1972 Feb;221(1):121-36 - PubMed
    1. J Physiol. 1972 Feb;221(1):105-20 - PubMed
    1. J Physiol. 1974 Mar;237(3):573-605 - PubMed
    1. J Physiol. 1970 Jul;208(3):607-44 - PubMed

Publication types

LinkOut - more resources