Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer
- PMID: 30902432
- DOI: 10.1016/j.jcrs.2018.12.015
Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer
Abstract
Purpose: To investigate corneal biomechanical parameters in healthy and keratoconic eyes using the Ocular Response Analyzer dynamic bidirectional applanation device (ORA) and the Corvis ST dynamic Scheimpflug analyzer (CST).
Setting: Department of Ophthalmology, Carl Gustav Carus University Hospital Dresden, Germany.
Design: Prospective, monocentric, case-control study.
Methods: Corneal biomechanical parameters were obtained in 60 eyes of 60 healthy participants (Group I) and 60 eyes of 60 keratoconus patients (Group II) with different grades of severity using the ORA and the CST. Participants were matched by age (Group I: 38.3 years ± 12.8 [SD], Group II: 37.3 ± 11.2 years) and intraocular pressure (Group I: 13.7 ± 1.7 mm Hg, Group II: 13.6 ± 1.5 mm Hg).
Results: For the ORA, the receiver operating characteristic curve analysis showed an area under the curve (AUC) of 0.950 for the keratoconus score, a sensitivity of 87% and a specificity of 93%. The AUC for the corneal resistant factor and corneal hysteresis was 0.930 and 0.868 with a sensitivity of 87% and a specificity of 87%, and sensitivity of 80% and a specificity of 80%, respectively. For the CST, the corneal biomechanical index showed the highest AUC (0.977) with a sensitivity of 97% and a specificity of 98%. The AUC of integrated radius (0.974; 90% sensitivity, 93% specificity) was followed by maximum inverse radius (0.962; 92% sensitivity, 93% specificity). Most parameters were able to discriminate healthy eyes from different keratoconus stages and early stages of keratoconus from moderate stages.
Conclusion: Both devices allowed for good differentiation between healthy eyes and keratoconic eyes and between different severity grades of keratoconus. Several parameters of ORA and CST revealed high sensitivity and specificity values for keratoconus detection.
Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Corneal Biomechanics in Unilateral Keratoconus and Fellow Eyes with a Scheimpflug-based Tonometer.Optom Vis Sci. 2018 Jul;95(7):608-615. doi: 10.1097/OPX.0000000000001241. Optom Vis Sci. 2018. PMID: 29957740
-
Long-term Evaluation of Corneal Biomechanical Properties After Corneal Cross-linking for Keratoconus: A 4-Year Longitudinal Study.J Refract Surg. 2018 Dec 1;34(12):849-856. doi: 10.3928/1081597X-20181012-02. J Refract Surg. 2018. PMID: 30540368
-
Comparison of eye-rubbing effect in keratoconic eyes and healthy eyes using Scheimpflug analysis and a dynamic bidirectional applanation device.J Cataract Refract Surg. 2019 Aug;45(8):1156-1162. doi: 10.1016/j.jcrs.2019.03.017. Epub 2019 Jul 2. J Cataract Refract Surg. 2019. PMID: 31272774
-
Biomechanical properties of the keratoconic cornea: a review.Clin Exp Optom. 2015 Jan;98(1):31-8. doi: 10.1111/cxo.12211. Clin Exp Optom. 2015. PMID: 25545947 Review.
-
Dynamic corneal deformation response and integrated corneal tomography.Indian J Ophthalmol. 2018 Mar;66(3):373-382. doi: 10.4103/ijo.IJO_831_17. Indian J Ophthalmol. 2018. PMID: 29480246 Free PMC article. Review.
Cited by
-
The Increase in Corneal Stiffness After Accelerated Corneal Cross-Linking in Progressive Keratoconus Using Different Methods of Epithelial Debridement.Transl Vis Sci Technol. 2024 Oct 1;13(10):38. doi: 10.1167/tvst.13.10.38. Transl Vis Sci Technol. 2024. PMID: 39470468 Free PMC article.
-
A Hybrid Transformers-based Convolutional Neural Network Model for Keratoconus Detection in Scheimpflug-based Dynamic Corneal Deformation Videos.J Ophthalmic Vis Res. 2025 Jun 18;20:10.18502/jovr.v20.17716. doi: 10.18502/jovr.v20.17716. eCollection 2025. J Ophthalmic Vis Res. 2025. PMID: 40689120 Free PMC article.
-
[Keratoconus detection and classification from parameters of the Corvis®ST : A study based on algorithms of machine learning].Ophthalmologe. 2021 Jul;118(7):697-706. doi: 10.1007/s00347-020-01231-1. Epub 2020 Sep 24. Ophthalmologe. 2021. PMID: 32970190 Free PMC article. German.
-
Artificial intelligence in corneal diseases: A narrative review.Cont Lens Anterior Eye. 2024 Dec;47(6):102284. doi: 10.1016/j.clae.2024.102284. Epub 2024 Aug 27. Cont Lens Anterior Eye. 2024. PMID: 39198101 Review.
-
Accuracy of new Corvis ST parameters for detecting subclinical and clinical keratoconus eyes in a Chinese population.Sci Rep. 2021 Mar 2;11(1):4962. doi: 10.1038/s41598-021-84370-y. Sci Rep. 2021. PMID: 33654120 Free PMC article. Clinical Trial.
MeSH terms
LinkOut - more resources
Full Text Sources